内容に類似性のあるシラバス

233 件ヒット (0.033秒):

  •   量子力学B / Quantum Mechanics B  
      寺川 貴樹  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    原子核物理学や原子核工学に必要な基礎知識を得ることを目的として、本講義では、原子や原子核の性質を理解するための多粒子系の量子力学、シュレーディンガー方程式の近似解法に用いられる摂動計算、粒子の散乱や反応を記述するためのポテンシャル散乱の理論、X線やガンマ線放射の理解のための光の放射について学ぶ。

    本講義は、Google Classroomを利用する。クラスコードは「fsnmp5j」である。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    The purpose of this class is to achieve the basic knowledge for understanding nuclear physics and nuclear technology. In this class, students will learn about quantum mechanics for many particle systems for atoms and nuclei, perturbation theories to approximately solve some Schrodinger equations, potential scattering theories for describing particle scatterings and reactions, and photon emission for understanding X-ray and gamma-ray from atoms and nuclei, respectively.

  •   量子力学Ⅱ / Quantum Mechanics II  
      中山 和則  
      理  
      前期  
      前期 木曜日 2講時  

    現代物理学のあらゆる分野において量子力学の考え方が必要不可欠である。この講義では量子力学Iに引き続き、量子力学の基礎概念を学習する。

    To understand modern physics ranging from elementary particle physics to condensed matter physics and cosmology, the concept of quantum mechanics, which describes the law of Nature in the microscopic scale, is an indispensable ingredient. In this lecture we learn the basic concept of quantum mechanics continuing the lecture course of Quantum Mechanics I.

  •   量子力学Ⅲ / Quantum Mechanics III  
      米倉 和也  
      理  
      後期  
      後期 金曜日 2講時  

    「量子力学I,II」に引き続き、量子力学のやや高度な内容を扱う。

    Continuing "Quantum Mechanics I, II", some advanced topics in quantum mechanics are treated.

  •   量子力学演習 / Exercises in Quantum Mechanics  
      中山 洋平  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    Google Classroomは演習問題の提出に利用する.

    1.目的

     この演習は量子力学Aと量子力学Bの講義に付随するものであり,両講義で学んだことをよりよく理解するために演習問題を解く.

    2.概要

     配布された問題を解き,レポートとして提出する.

    3.達成目標等

     問題を解く力と読みやすいレポートを書く力を養う.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    This course aims to understand the content of "Quantum Mechanics A and B" deeply by taking advanced exercises.

    2. Overview

    Students solve problems, compile them into a report, and submit it to your instructor.

    3. Achievement target

    It is to develop the ability to solve problems and write easy-to-read reports.

  •   核エネルギー物理学 / Nuclear Energy Physics  
      伊藤 悟, 加田 渉  
      工  
       
       

    本講義のためのGoogle Classroomのクラスコードは「fqnjjaj」である。

    講義に関する各種連絡は当該Classroomを通じて行うので、受講者は忘れずに登録のこと。

    本講義では、原子核の性質、原子核の構造、原子核の崩壊、放射線と物質との相互作用を理解するために必要な原子核物理学の基礎を学び、その応用として放射線検出器、粒子加速器、原子力及び核融合の基礎知識を得る。

    In this class, students will learn about the introductory nuclear physics to understand nuclear properties, nuclear structure, nuclear decay and interaction of radiation with matter, and achieve the basic knowledge of radiation detectors and particle accelerators, and nuclear power generation (nuclear fission and fusion) as applications of nuclear physics.

  •   原子核物理学Ⅱ / nuclear physics from view point of few-body problem  
      肥山 詠美子  
      理  
      前期  
      前期 火曜日 2講時  

    物理学の世界で重要なことは、ミクロの世界の 様々な少数粒子系(特に、3体系・4体系)の運動方程式を、精密に解いて 研究することであり、これにより、物理的な知見を深め、新しい発見や予言に至ることが しばしばある。そのためには、「量子力学の基礎方程式(シュレーディンガー方程式)を、3体問題・4体問題に対して、 精密に解く、適用範囲の広い計算方法」 の開発が不可欠である。特に原子核物理学では、核子間には強い力が働くために、その解き方の開発は容易ではない。ここで、原子核の基本的なことを学びつつ、原子核の研究に使用される計算法についても紹介していく。

    In physics, it is important to precisely solve and study the equations of motion of various small systems of particles (especially three- and four-body systems) in the microscopic world, which often leads to new discoveries and predictions. For this purpose, it is essential to develop "a calculation method with a wide range of applications that precisely solves the fundamental equations of quantum mechanics (Schrödinger equation) for three-body and four-body problems. Especially in nuclear physics, it is not easy to develop such a method because of the strong forces between nucleons. in this lecture, we learn fundamental subjects in nuclear physics and I introduce the computational methods for nuclear physics.

  •   量子物理学 / Quantum Physics  
      渡邉 昇  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    本講義の目的は、原子・分子の電子状態および光や荷電粒子との相互作用を取扱う量子論的手法を紹介することにある。多数の荷電粒子からなる系の取り扱いについて解説した後、光と物質との相互作用や散乱理論について論じる。基礎理論を理解するとともに、分析で用いられる様々な分光学的実験手法との関係に留意しながら学習する。原子・分子および光と物質との相互作用を記述する基本手法の習得が達成目標である。

    授業方法等はGoogle Classroom(クラスコード: mh7c55t)で通知。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    The purpose of this course is to introduce quantum-mechanical methods to describe many-electron systems and their interaction with light. Based on the methods, we discuss the electronic structures of atoms and molecules, and learn photo absorption, emission, and scattering phenomena, together with various spectroscopic methods. Students are expected to obtain the principles of methods to describe atoms, molecules, and their interaction with photons.

    The Class format will be announced in Google Classroom (class code: mh7c55t).

  •   量子力学B / Quantum Mechanics B  
      清水 幸弘  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認できます。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

     量子力学は,物性物理学や材料科学をミクロな立場から理解するために必要不可欠な概念である.また、量子コンピュータ科学を学ぶための基礎である.この講義では,量子力学の基礎を習得し,量子力学を道具として使いこなすことができるようになることを目的とする.

    2.概要

     はじめに量子力学の数学的基礎を学び,次に水素原子の問題を取り扱う.また,重要な近似計算法である摂動論と変分法を学ぶ.

    3.達成目標等

    ・ 量子力学の概念を系統的に理解する.

    ・ 水素原子の電子のエネルギー固有状態について理解する.

    ・ 摂動論と変分法の近似計算ができる.

    講義は対面形式で実施する。お知らせなどにGoogle Classroom(クラスコード: 5smyaxd)を用いる.

    Google Classroom class codes can be found on the School of Engineering website at https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html

    Goal of Quantum Mechanics B

    Quantum mechanics is an indispensable concept for understanding condensed matter physics and materials science from a microscopic standpoint. It is also the basis for studying quantum computer science.The purpose of this lecture is to provide students with the basics of quantum mechanics and to enable them to use quantum mechanics as a tool.

    Outline

    The mathematical basis of quantum mechanics is first introduced, and then the problem of the hydrogen atom is treated. Perturbation theory and variational methods, which are important approximate calculation methods, are also covered.

    Objectives

    To understand the concepts of quantum mechanics systematically.

    To understand the energy eigenstates of electrons in hydrogen atoms.

    To be able to perform approximate calculations of perturbation theory and variational method.

    Lectures will be conducted in a face-to-face format. Google Classroom (class code: 5smyaxd) will be used for announcements.

  •   量子・統計力学 / Quantum and Statistical Mechanics  
      永井 康介, 井上 耕治, 外山 健, 人見 啓太朗, 吉田 健太  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    本講義ではGoogle Classroomを使用してリアルタイム講義を行います。

    クラスコード:ucgb2cg

    量子エネルギー工学を専攻する際の基礎となる量子力学を身につける。特に、量子力学の一般論、主な近似法、原子分子状態、さらにはそれらの応用としての半導体やレーザの基本となる量子物理を学ぶことを目的とする。

    先ず、量子力学の一般論を簡単に講義した後、箱の中の自由粒子、調和振動子、角運動量と球対称場における粒子と水素原子、時間に依存しない摂動論、時間依存の摂動論、電磁場と電子系の相互作用、量子統計(Fermi-Dirac分布など)の基礎などを講義する。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Basis of quantum and statistical mechanics. The detail is shown below.

  •   光物性物理学 / Optical Physics and Photonic Materials  
      小野 円佳, 寺門 信明  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    ★Google Classroom クラスコード:5m22kni

    前半を寺門、後半を小野が担当します

    1. Maxwell方程式 -波動方程式の導出-

    2. 放射場 -古典論,量子化,光子-

    3. 光と物質の相互作用 I -古典論:LorentzモデルとDrudeモデル-

    4. 電磁場の放射 -電気双極子放射-

    5. 光と物質の相互作用 II -量子論:遷移,Fermiの黄金律-

    6. 固体中の電子遷移 -断熱近似とFranc-Condonの原理-

    7. 光散乱 -古典論と量子論-

    8. ものの見え方は何で決まるのか? - 屈折率、反射、吸収、散乱、スペクトルから見る-

    9. 金属・半導体・絶縁体 の見た目 - 光に対してpassiveなもの、activeなものをどう作るのか?

    10. 光を使って現象をひも解く I - 線形光学特性 -

    11. 光を使って現象をひも解く II - 非線形光学特性、コヒーレント、インコヒーレント、偏光特性 -

    12. 光を使って現象をひも解く III - 様々な分光法と物質の応答 -

    13. 量子光学 - 波?粒子? 光子と電子の相違 -

    14. 量子光学と物質 - レーザー、非線形光学との関係 -

    15 予備

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    ★Google Classroom, Class-code: 5m22kni

    1. Maxwell's equation -Derivation of wave equation-

    2. Radiation field -Classical theory, quantization, photon-

    3. Interaction between light and matter I -Classical theory: Lorentz and Drude models-

    4. Radiation of electromagnetic fields -Electric dipole radiation-

    5. Interaction between light and matter II -Quantum theory: transitions, Fermi's golden rule-

    6. Electronic transitions in solids -Adiabatic approximation and Franc-Condon's principle-

    7. Light scattering -Classical and quantum theories-

    8. What determines how things look - Refractive index, Reflection, Absorption, Scatterings, Spectrum.

    9. Appearance of metals, semiconductors, indulators - How to make materials that are passive or active to light-

    10. Use light to analyze phenomena I - fundamentals, linear optical propertie-

    11. Use light to analyze phenomena II - fundamentals, nonlinear optical properties, coherent and incoherent response-

    12. Use light to analyze phenomena III - various approaches using light and how materials act against it -

    13. Quantum optics and materials I - wave? or particles? Difference between photons and electrons -

    14. Quantum optics and materials II - Laser, nonlinear optical materials -

    15 If necessary..

もっと見る…