内容に類似性のあるシラバス

103 件ヒット (0.015秒):

  •   場の量子論基礎 / Basic quantum field theory  
      米倉 和也  
      理  
      後期  
      後期 金曜日 3講時  

    Quantum field theory is the basic framework for the fundamental laws of high energy physics. It is also a convenient tool for describing long-wavelength phenomena in condensed matter physics. This lecture explains basic theory of quantum field theory. It is assumed that the students have learned and deeply understood quantum mechanics.

    Quantum field theory is the basic framework for the fundamental laws of high energy physics. It is also a convenient tool for describing long-wavelength phenomena in condensed matter physics. This lecture explains basic theory of quantum field theory. It is assumed that the students have learned and deeply understood quantum mechanics.

  •   相対論的量子力学 / Relativistic Quantum Mechanics  
      山田 將樹  
      理  
      前期  
      前期 水曜日 2講時  

    非相対論的量子力学の復習後、相対論的な運動をする粒子に対する量子力学を構成する。特に電子が従うディラック方程式などについて深く考察する。前半ではディラック方程式を波動関数の方程式として考え、その成功と問題点を見る。後半では場の量子化の概念を導入し、場の量子論への入門的事項を学ぶ。

    After reviewing the non-relativistic quantum mechanics, I will construct the quantum mechanics describing a particle with relativistic motion. A particular emphasis is given to the Dirac equation describing the motion of electrons. In the first half of the lectures, I describe the Dirac equation as an equation for wave functions,and see its success and failure. In the second half of the lectures,the notion of quantization of fields is explained as an introduction to quantum field theory.

  •   場の量子論基礎 / Introduction to quantum field theory  
      隅野 行成  
      理  
      前期  
      前期 火曜日 2講時  

    素粒子原子核物理学、及び物性物理学の深い理解に不可欠である場の量子論の基礎的事項を講義する。

    正準量子化による場の量子化を行ない、超伝導現象の記述、相対論的場の量子化、ファインマン・ルールの導出などを扱う。

    The lecture will deal with the fundamental aspects of quantum field theory, which are essential for a deep understanding of particle, nuclear, and condensed matter physics.

    We will introduce quantum field theory using canonical quantization, by which subjects such as description of superconducting phenomena, quantization of relativistic fields, and derivation of Feynman rules will be discussed.

  •   量子力学Ⅱ / Quantum Mechanics II  
      中山 和則  
      理  
      前期  
      前期 木曜日 2講時  

    現代物理学のあらゆる分野において量子力学の考え方が必要不可欠である。この講義では量子力学Iに引き続き、量子力学の基礎概念を学習する。

    To understand modern physics ranging from elementary particle physics to condensed matter physics and cosmology, the concept of quantum mechanics, which describes the law of Nature in the microscopic scale, is an indispensable ingredient. In this lecture we learn the basic concept of quantum mechanics continuing the lecture course of Quantum Mechanics I.

  •   物理学C  
      小池 武志  
      国際学士コース(*)  
      3セメスター  
      前期 水曜日 1講時 その他  

    Electromagnetic phenomena are abundant in our daily lives from electricity (volts, amperes, watts, etc) we use every day, magnets on our refrigerator, to all lights surrounding us. The vastness and complexity of this interesting subject results from only four equations, Maxwell's equations. In this course, they shall be the starting and ending point. Our goal is to appreciate and understand various manifestations of these four equations by studying electric and magnetic forces and interactions between them.

  •   物理と対称性 / Physics and Symmetry  
      那須 譲治  
      理  
      前期  
      前期 金曜日 2講時  

    現代物理学における重要な概念のひとつである対称性について、その数学的基礎である群論について学ぶ。ここでは、特に、量子力学を理解する上で強力な道具となりうる群の表現論を学ぶことで、対称性に立脚した物理の見方と量子系への応用力を身につける。線形代数などの数学と量子力学Iの内容を習得していることを前提とする。

    Symmetry is one of the most essential concepts in modern physics. Here, we will study the mathematical basics of group theory. In particular, we will learn the representation theory of groups, which can be a powerful tool in understanding quantum mechanics and acquiring perspectives on physics and applications to quantum systems using group theory. We assume that the students have enough knowledge of linear algebra and the contents of Quantum Mechanics I.

  •   科学の最前線Ⅰ / Frontiers in Science I  
      岩渕 司  
      理  
      後期  
      後期 水曜日 5講時  

    This is a course introducing recent topics in various areas of science including quantum mechanics and quantum technology. Lectures are given by 13 faculty members from all the departments (Mathematics, Physics, Astronomy, Geophysics, Chemistry, and Earth Science) in Graduate School of Science. Each faculty member discusses up-to-date topics in his/her specialty. The lectures are prepared for non-experts and thus this course is an outstanding opportunity to obtain familiarity with areas other than the students' specialties. The class meets every Wednesday, 4:20-5:50 pm.

    This is a course introducing recent topics in various areas of science including quantum mechanics and quantum technology. Lectures are given by 13 faculty members from all the departments (Mathematics, Physics, Astronomy, Geophysics, Chemistry, and Earth Science) in Graduate School of Science. Each faculty member discusses up-to-date topics in his/her specialty. The lectures are prepared for non-experts and thus this course is an outstanding opportunity to obtain familiarity with areas other than the students' specialties. The class meets every Wednesday, 4:20-5:50 pm.

  •   光物性物理学 / Optical Physics and Photonic Materials  
      小野 円佳, 寺門 信明  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    ★Google Classroom クラスコード:5m22kni

    前半を寺門、後半を小野が担当します

    1. Maxwell方程式 -波動方程式の導出-

    2. 放射場 -古典論,量子化,光子-

    3. 光と物質の相互作用 I -古典論:LorentzモデルとDrudeモデル-

    4. 電磁場の放射 -電気双極子放射-

    5. 光と物質の相互作用 II -量子論:遷移,Fermiの黄金律-

    6. 固体中の電子遷移 -断熱近似とFranc-Condonの原理-

    7. 光散乱 -古典論と量子論-

    8. ものの見え方は何で決まるのか? - 屈折率、反射、吸収、散乱、スペクトルから見る-

    9. 金属・半導体・絶縁体 の見た目 - 光に対してpassiveなもの、activeなものをどう作るのか?

    10. 光を使って現象をひも解く I - 線形光学特性 -

    11. 光を使って現象をひも解く II - 非線形光学特性、コヒーレント、インコヒーレント、偏光特性 -

    12. 光を使って現象をひも解く III - 様々な分光法と物質の応答 -

    13. 量子光学 - 波?粒子? 光子と電子の相違 -

    14. 量子光学と物質 - レーザー、非線形光学との関係 -

    15 予備

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    ★Google Classroom, Class-code: 5m22kni

    1. Maxwell's equation -Derivation of wave equation-

    2. Radiation field -Classical theory, quantization, photon-

    3. Interaction between light and matter I -Classical theory: Lorentz and Drude models-

    4. Radiation of electromagnetic fields -Electric dipole radiation-

    5. Interaction between light and matter II -Quantum theory: transitions, Fermi's golden rule-

    6. Electronic transitions in solids -Adiabatic approximation and Franc-Condon's principle-

    7. Light scattering -Classical and quantum theories-

    8. What determines how things look - Refractive index, Reflection, Absorption, Scatterings, Spectrum.

    9. Appearance of metals, semiconductors, indulators - How to make materials that are passive or active to light-

    10. Use light to analyze phenomena I - fundamentals, linear optical propertie-

    11. Use light to analyze phenomena II - fundamentals, nonlinear optical properties, coherent and incoherent response-

    12. Use light to analyze phenomena III - various approaches using light and how materials act against it -

    13. Quantum optics and materials I - wave? or particles? Difference between photons and electrons -

    14. Quantum optics and materials II - Laser, nonlinear optical materials -

    15 If necessary..

  •   固体相関物理学特論 / Lecture on Strongly Correlated Electron Systems in Condensed Matter Physics  
      木村 憲彰, 水上 雄太  
      理  
      前期  
      前期 月曜日 3講時  

    本講義では磁性を中心とした固体中の電子相関に関する基本的な事項について、局在・遍歴の両視点から解説する。具体的な物質群としてd電子系、f電子系を取り上げるが、あえてd電子系を局在の立場から、f電子系を遍歴の立場から眺めることで、これら強相関電子系の理解を深める。

    This course provides a basic understanding of electron correlation in solids, focusing on magnetism. The lecture explains the subject from both localized and itinerant perspectives. Specific material groups such as d-electron and f-electron systems are discussed, with d-electron systems viewed from a localized perspective and f-electron systems from an itinerant perspective. This approach enhances the understanding of these strongly correlated electron systems.

  •   量子力学C / Quantum Mechanics C  
      土浦 宏紀  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    応用物理学コースにおける最後の量子力学講義です.量子力学を用いて多様な物理現象を解析し理解できるようになることを目指します.はじめに磁場中の量子力学および角運動量について学んだ後,研究につながるトピックスとして,量子Hall系,散乱理論,巨視的量子現象などの初歩について学びます.

    【注意】

    1) この講義では,Google Classroomを使用して講義資料と講義情報を発信します.

    2) 量子力学Aの内容を復習することから始めますので,気楽に受講してください.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    This is the third course in the applied physics undergraduate Quantum Mechanics curriculum. By the end of this course, you will be able to interpret and analyze a wide range of quantum mechanical systems.

    After introducing Quantum Mechanics for charged particles in electromagnetic fields, and also for angular momentum, this course will provide the foundation of some of the important model systems studied in contemporary physics, including quantum Hall systems, scattering theory, and also macroscopic quantum phenomena.

    [Note]

    1) In this lecture, we will use Google Classroom to send out lecture materials and information.

    2) We will start by reviewing basic concepts of Quantum Mechanics given in the course "Quantum Mechanics A".

もっと見る…