内容に類似性のあるシラバス

701 件ヒット (0.023秒):

  •   (IMAC-U)計算材料力学 / (IMAC-U)Computational Mechanics of Materials  
      青栁 吉輝  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1. Class subject

    This course aims to obtain knowledge and understanding of fundamental of finite element (FE) method computing displacement, strain, and stress.

    2. Object and abstract of class

    In this lecture, the formulation of the FE method and FE analysis for two-dimensional elasticity problems are described, which is a foundation of computational solid mechanics.

    3. Goal of study

    To obtain knowledge and understanding of the formulation of the FE method based on constant strain element.

    <Important>

    This lecture will be given using Google Classroom. The class code is "xyvrgpr".

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Class subject

    This course aims to obtain knowledge and understanding of fundamental of finite element (FE) method computing displacement, strain, and stress.

    2. Object and abstract of class

    In this lecture, the formulation of the FE method and FE analysis for two-dimensional elasticity problems are described, which is a foundation of computational solid mechanics.

    3. Goal of study

    To obtain knowledge and understanding of the formulation of the FE method based on constant strain element.

    <Important>

    This lecture will be given using Google Classroom. The class code is "xyvrgpr".

  •   計算材料力学 / Computational Mechanics of Materials  
      白須 圭一  
      工  
       
       

    本授業では計算固体力学の基礎である二次元弾性問題に対するFEMの定式化およびFEM解析について解説する.

    有限要素法(FEM)を用いて二次元弾性問題における変位,ひずみ,応力を求める.

    定ひずみ要素に基づくFEMの定式化に関する知識と理解を得ることを到達目標とする.

    Google Classroomのクラスコード: flcikzf

    This course aims to obtain knowledge and understanding of fundamental of finite element (FE) method computing displacement, strain, and stress.

    In this lecture, the formulation of the FE method and FE analysis for two-dimensional elasticity problems are described, which is a foundation of computational solid mechanics.

    To obtain knowledge and understanding of the formulation of the FE method based on constant strain element.

    The class code of Google Classroom: flcikzf

  •   弾性体力学 / Theory of Elasticity  
      寺田 賢二郎, 山川 優樹  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割 (https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1. 目的

    鋼・コンクリート・地盤など,土木工学で対象とする材料の力学挙動の評価には連続体モデルが用いられることが多い.この授業では,材料の変形や応力に関する基本事項と,連続体モデルのうち最も基礎となる弾性体モデルについて学ぶ.

    2. 概要

    2次元や3次元的な広がりをもつ材料におけるひずみや応力の定義と数学的とり扱い方,弾性体のひずみと応力の関係式とその材料パラメータ,及びこれらにつり合い方程式を加えた境界値問題が主な内容である.

    3. 達成目標:

    この授業では,主として以下の事項を達成することを目標とする.

    1) 応力やひずみなどの力学諸量の定義と性質を理解し,その数学的取り扱い方法を習得する.

    2) 材料の力学的挙動をモデル化する数学的プロセスを理解し,それを適切に応用できる.

    3) 弾性体の力学挙動に関する支配方程式系について理解し,これを簡単な問題の解析に応用できる.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objectives

    This course provides the theory of elasticity, which is the most important and fundamental theory in continuum mechanics and is used as an inevitable tool in evaluating the mechanical behavior of materials, such as soil, rock, concrete, and steel, in civil engineering.

    2. Overview

    The main contents are the definition and mathematical treatment of strain and stress in materials, the equations relating strain and stress in elastic bodies and their material parameters, and equilibrium equations to define boundary value problems.

    3. Goal of Study

    This course aims for students:

    1) to understand the definitions and properties of mechanical variables such as stress and strain and to master their mathematical treatments;

    2) to understand the mathematical process of modeling mechanical behavior of materials and to become able to use them correctly;

    3) to master the governing equations related to the mechanical behavior of elastic materials and to become able to apply them to simple analysis of mechanical problems.

  •   計算力学 / Computational Mechanics  
      伊藤 高敏  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    コンピュータの発達に伴い、実験や理論の代わりに計算機シミュレーションが用いられることが多くなった。この状況に鑑みて、計算機シミュレーションの基礎となる考え方について、有限要素法を中心とした解説ないし演習を行う。

    1.計算力学の役割

    2.差分法による微分方程式の解法

    3.有限要素法による微分方程式の解法

    4.弾性問題の有限要素解析

    5.その他(個別要素法など)の手法

    Classroom code: egg3kwh

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    Accordingly to revolutionary increase in computer performance, the computational mechanics is becoming a powerful way to examine phenomena in place of conventional theoretical and experimental approaches. This course will introduce basic idea of the computational mechanics with emphasis on finite element methods

    .

    1. Role of computational mechanics

    2. Finite Difference Method, FDM

    3. Finite Element Method, FEM

    4. Application of FEM to elastic problem

    5. Other approaches, Discrete Element Method etc.

    Classroom code: egg3kwh

  •   固体力学 / Solid Mechanics  
      青栁 吉輝  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    This class is designed to provide students with a comprehensive understanding of deformation of solids and covers the fundamentals of continuum solid mechanics. It focuses on two-dimensional elasticity in infinitesimal strain theory, the concept of strain and stress, and the introduction of general methods of solving the boundary value problems through the specific problems. Moreover, this class also covers the fundamentals of finite deformation theory, which is used for addressing the large deformations of solids.

    <Important>

    This lecture will be given using Google Classroom. The class code is "hobcuun".

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    This class is designed to provide students with a comprehensive understanding of deformation of solids and covers the fundamentals of continuum solid mechanics. It focuses on two-dimensional elasticity in infinitesimal strain theory, the concept of strain and stress, and the introduction of general methods of solving the boundary value problems through the specific problems. Moreover, this class also covers the fundamentals of finite deformation theory, which is used for addressing the large deformations of solids.

    <Important>

    This lecture will be given using Google Classroom. The class code is "hobcuun".

  •   弾性体力学 / Mechanics of Elastic bodies  
      岡田 知己  
      理  
      前期  
      前期 月曜日 1講時  

    変形がきわめて小さいとき,「線形弾性」は多くの物体の変形に対してよい近似である.「線形弾性論」は固体力学,地震学,測地学,材料力学など幅広い分野で活用されており,本講義ではそれら分野に共通する線形弾性論の基礎方程式の導出までを主として扱う.

    In the sufficient small deformation condition, the linear elastic is good assumption. The linear elastic is widely used in many field such as seismology, geodesy, material mechanics, and so on. In this lecture, students will learn the basic elastic theorem.

  •   計算塑性力学 / Computational Plasticity  
      山川 優樹, 齊木 功  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    本講義では,弾塑性モデルを中心とした材料構成則の基礎理論を詳説するとともに,各種材料モデルを有限要素法などの構造解析へ導入するための数値計算法を講義する.連続体力学の復習から出発し,一次元弾塑性モデルの例示により基礎事項を理解した上で,三次元弾塑性モデルへと展開し,材料構成則の一般理論の理解を目指す.古典塑性論で中心的な対象とされる金属材料の塑性モデルのほか,土木分野で重要となる地盤材料やコンクリートなどの各種構成モデルも取り上げる.本講義では主に微小変形理論に基づく材料構成則を取り上げるが,講義の後半では発展的事項として2000年代以降に体系化された最新の有限変形弾塑性理論についても触れる.

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    This course aims to learn the fundamental theory of constitutive equations for various solid materials, with a focus on elasticity, plasticity, and other classes of inelasticity. Numerical formulation and implementation for various types of constitutive models are also addressed, which are necessary for nonlinear finite element analysis of solids and structures. Starting from a review of the basics of continuum mechanics, the topics of this course encompass an introduction to one-dimensional model for plasticity, generalization to three-dimensional constitutive theory, and then specific plasticity models for various engineering materials, such as metals, geomaterials, rocks, and concretes. The main focus is placed on the constitutive theory within the small-strain framework, while the latter part of the course will be devoted to the advanced theory for finite-strain elastoplasticity.

  •   弾性力学 / Theory of Elasticity  
      燈明 泰成, 岡部 朋永  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1. 目的

      外力の作用を受けたときの弾性体の変形を数理的にとらえ、弾性問題に対して解析を行う場合の基礎事項について学ぶ。

    2. 概要

      主な授業内容は、1.変位,ひずみ、2.応力、3.ひずみエネルギー、4.構成方程式、5.弾性理論の基礎式、6.ねじり問題・曲げ問題・二次元問題の解析、である。

    3. 達成目標等

      本授業の主要な修得目標は以下の通りである。

      (1) 弾性体の変形を論理的・体系的に把握し,説明することができる。

      (2) 弾性問題に対して解析を行う場合の基礎事項を理解し,説明することができる。

    本講義は、Google Classroomを併用する。クラスコードは「ryrskte」である。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

      When an elastic body is subjected to a load, it deforms and stresses are caused. The basis of continuum mechanics called elasticity which treats these phenomena mathematically is explained.

    2. Overview

      The main contents of this course are: 1.displacement, strain, 2.stress, 3.strain energy, 4.constitutive equations, 5.fundamentl equations of theory of elasticity, 6. analysis of torsion, bending and two-dimensional problems.

    3. Achievement goal

      The main objectives of this course are as follows

      (1) To be able to grasp and explain deformation of elastic body logically and systematically.

      (2) To be able to understand and explain the fundamentals of analysis for elastic problems.

    Google Classroom is also used for this lecture. The class code is "ulsabwj".

  •   (IMAC-U)弾性力学 / (IMAC-U) Theory of Elasticity  
      山本 剛  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    Google Classroom will be used in this course.

    Class code is "xd6z74k".

    Please visit Google Classroom and enter the class code.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    When an elastic body is subjected to a load, it deforms and stresses are caused. The basis of continuum mechanics called elasticity which treats these phenomena mathematically is explained, where deformation is assumed to be infinitesimal. This lecture gives the basis of solid mechanics.

  •   連続体力学 / Continuum Mechanics  
      石川 拓司, 大森 俊宏  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    連続体力学の講義では、物質を巨視的な視点で連続体とみなし、固体や流体の変形や流動を数学的に記述することを目的としている。講義では、連続体の概念を説明し、それを理解するために必要なベクトル・テンソル解析の解説を行い、物質の変形や運動を記述する支配方程式に対する理解を深める。各種力学量のつり合いや、物質固有の構成関係と境界条件を定式化し、境界値問題への適用を示す。連続体力学は、学部で学習した「材料力学」や「流体力学」の基盤となる学問であり、固体や流体の挙動の統一的な理解を目指す学生に受講を勧める。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Materials may be regarded as continuum at the macroscopic scale. In this lecture, we aim to mathematically understand the motion and deformation of materials, such as solid and fluid, at the macroscopic scale. We first explain the concepts of continuum and stress as well as vector/tensor analysis. We then derive basic equations describing the motion and deformation of continuum, such as equilibrium equation, constitutive equation and boundary conditions. This lecture is the basis of solid and fluid mechanics, which is recommended to students who want to establish a whole picture of both subjects.

もっと見る…