内容に類似性のあるシラバス

99 件ヒット (0.028秒):

  •   物理化学特別講義B / Quantum chemical analysis of potential energy surfaces  
      理学部非常勤講師  
      理  
      前期集中  
      前期集中 その他 連講  

    量子化学計算に基づくポテンシャルエネルギー曲面の解析は、分子の安定構造、分子の熱力学的および速度論的な安定性、化学反応の遷移状態における分子構造とその安定性、反応途中における分子構造の変化の様子など、様々な知見を与える。近年では、これらの解析を組み合わせて、未知の化学反応を予測することも可能である。本講義では、これらの解析を実施する際に用いられる理論および計算法について学習する。具体的には、ポテンシャルエネルギー曲面の計算に関するレビューから始めて、関数極小化の数値アルゴリズム、ポテンシャルエネルギー曲面のテーラー展開と2次までの微係数の取り扱い、安定構造と遷移状態構造の最適化アルゴリズム、固有反応座標(いわゆる反応経路)とその計算アルゴリズム、安定構造と遷移状態構造の自由エネルギー変化に基づく速度論解析、反応経路の自動探索アルゴリズムと化学反応予測、異なる電子状態間の無輻射失活経路の計算法、複数の電子励起状態が関与する反応機構の解析法、原子核の運動量効果とその反応機構への影響について、それぞれ学習する。これらの学習を通して、量子化学計算に基づく反応機構解析と反応予測について、最先端アルゴリズムまで含めて全容を把握する。

    The analysis of potential energy surfaces based on quantum chemical calculations provides various insights into the stable structure of molecules, the thermodynamic and kinetic stability of molecules, the molecular structure and its stability in the transition state of a chemical reaction, and how the molecular structure changes during a reaction. In recent years, these analyses can be combined to predict unknown chemical reactions. In this lecture, students will learn the theory and computational methods used to perform these analyses. Specifically, we will begin with a review of the calculation of potential energy surfaces, followed by explanations of a numerical algorithm for function minimization, Taylor expansion of potential energy surfaces and treatment of differential coefficients up to second order, optimization algorithms for stable and transition state structures, intrinsic reaction coordinates (so-called reaction pathways) and their calculation algorithm, kinetic analysis based on free energy changes of stable and transition state structures, automated reaction pathway search algorithms and chemical reaction prediction, calculation methods for non-radiative deactivation pathways between different electronic states, analysis methods for reaction mechanisms involving multiple electronic states, and nuclear momentum effects and their impact on reaction mechanisms. Through these studies, students will gain a comprehensive understanding of reaction mechanism analysis and reaction prediction based on quantum chemical calculations, including state-of-the-art algorithms.

  •   物理化学特選Ⅰ / Quantum chemical analysis of potential energy surfaces  
      美齊津 文典  
      理  
      前期集中  
      前期集中 その他 連講  

    量子化学計算に基づくポテンシャルエネルギー曲面の解析は、分子の安定構造、分子の熱力学的および速度論的な安定性、化学反応の遷移状態における分子構造とその安定性、反応途中における分子構造の変化の様子など、様々な知見を与える。近年では、これらの解析を組み合わせて、未知の化学反応を予測することも可能である。本講義では、これらの解析を実施する際に用いられる理論および計算法について学習する。具体的には、ポテンシャルエネルギー曲面の計算に関するレビューから始めて、関数極小化の数値アルゴリズム、ポテンシャルエネルギー曲面のテーラー展開と2次までの微係数の取り扱い、安定構造と遷移状態構造の最適化アルゴリズム、固有反応座標(いわゆる反応経路)とその計算アルゴリズム、安定構造と遷移状態構造の自由エネルギー変化に基づく速度論解析、反応経路の自動探索アルゴリズムと化学反応予測、異なる電子状態間の無輻射失活経路の計算法、複数の電子励起状態が関与する反応機構の解析法、原子核の運動量効果とその反応機構への影響について、それぞれ学習する。これらの学習を通して、量子化学計算に基づく反応機構解析と反応予測について、最先端アルゴリズムまで含めて全容を把握する。

    The analysis of potential energy surfaces based on quantum chemical calculations provides various insights into the stable structure of molecules, the thermodynamic and kinetic stability of molecules, the molecular structure and its stability in the transition state of a chemical reaction, and how the molecular structure changes during a reaction. In recent years, these analyses can be combined to predict unknown chemical reactions. In this lecture, students will learn the theory and computational methods used to perform these analyses. Specifically, we will begin with a review of the calculation of potential energy surfaces, followed by explanations of a numerical algorithm for function minimization, Taylor expansion of potential energy surfaces and treatment of differential coefficients up to second order, optimization algorithms for stable and transition state structures, intrinsic reaction coordinates (so-called reaction pathways) and their calculation algorithm, kinetic analysis based on free energy changes of stable and transition state structures, automated reaction pathway search algorithms and chemical reaction prediction, calculation methods for non-radiative deactivation pathways between different electronic states, analysis methods for reaction mechanisms involving multiple electronic states, and nuclear momentum effects and their impact on reaction mechanisms. Through these studies, students will gain a comprehensive understanding of reaction mechanism analysis and reaction prediction based on quantum chemical calculations, including state-of-the-art algorithms.

  •   物理化学ⅠA / Molecular Reaction Dynamics  
      岸本 直樹  
      理  
      後期  
      後期 月曜日 3講時  

    化学反応の基礎理論である反応動力学と分子熱統計力学について学び、化学反応を分子レベルで深く理解するための基礎を固める。

    また、大学院入試の化学反応論・熱統計力学の問題にチャレンジすることで理解を深める。

    (物理化学概論Cを履修していることが望ましい。)

    Learn about the reaction dynamics which is the fundamental theory of chemical reaction, and set the foundation for deep understanding of chemical reactions at the molecular level. Also, deepen understanding by challenging the problem of chemical reaction theory of graduate entrance examination.

    (It is desirable that you take Butsuri Kagaku Gairon C)

  •   基礎物理化学 / Basic Physical Chemistry  
      壹岐 伸彦, 渡邉 賢  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1. 目的

    化学の諸原理を確立し敷衍する物理化学の基礎を学ぶための第一歩として,本講義では,物質の状態変化および化学変化についての熱力学的及び速度論的な理解の仕方を学習する。そこで基礎となる概念と,定量的な手法の習得を目的とする。

    2.概要

    状態変化の扱い方を学ぶとともに,熱力学諸法則,熱力学的状態量(エンタルピー,エントロピー,自由エネルギー,化学ポテンシャル等)の定義とそれらの定量的表現法,さらには,具体的な応用についても学習する。次に,熱力学的知見の重要な展開として,化学平衡と溶液の諸性質を議論し,最後に,速度論の基礎を学ぶ。

    3.達成目標等

    この授業では,主に以下のような知識・スキルの修得を目標とする。

    ・ 物質変化・状態変化に対しての熱力学的理解とその定量的表現。 

    ・ 実際の物質変化・状態変化の解析法とその応用。

    ・反応速度に関する基礎的理解と定式化及び決定法。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    Physical chemistry is a base of chemical principles to describe wide variety of chemical phenomena. To learn the basics of physical chemistry, understanding in the physical states of matters and chemical reaction in terms of thermodynamics and chemical kinetics is of particular importance. This course aims to deepen understanding in those concepts and quantitative description.

    2. Summary

    First, this course provides students with basic knowledge such as phase transition, principles of thermodynamics, definition and usage of state functions (enthalpy, entropy, free energy, and chemical potential), and their application to real systems. Second, thermodynamics of properties of solutions and chemical equilibrium. Third, chemical kinetics.

    3. Goal

    Students will acquire knowledge and develop the skills on the following matters:

    1) Understanding and description of phase transition and chemical reaction by thermodynamics.

    2) Quantitative description and analysis of such changes in real systems.

    3) Description of chemical kinetics by rate law and kinetic analysis.

  •   化学・バイオ工学演習A / Exercises A  
      伊野 浩介  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    「化学の基礎」としての物理化学と化学反応の基礎を、演習を通して習得する。

    2.概要

    構造論(量子化学、化学結合論)、物性論(有機分子,気体)、平衡論(熱力学、溶液化学、状態変化)ならびに反応(速度論,有機反応)に関する問題演習を行う。

    3.達成目標等

    演習を通じて、基礎の習得とその確認を行い、さらに応用につながるような知識を身につける。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    Learn the basics of physical chemistry and chemical reactions through exercises.

    2. Overview

    Exercises on structural theory (quantum chemistry, chemical bond theory), physical property theory (organic molecules, gases), equilibrium theory (thermodynamics, solution chemistry, change of state) and reactions (kinetics, organic reactions).

    3. Goals

    Through exercises, students will learn and confirm the fundamentals and acquire knowledge that will lead to further application.

  •   化学B  
      金野 智浩  
      薬  
      2セメスター  
      後期 水曜日 1講時 川北キャンパスB102  

    物理化学の基本事項である化学熱力学の基礎,相平衡と相図,化学反応速度論の基礎について講義する。

    The lecture will cover the (1) basics of chemical thermodynamics, (2) phase equilibria and phase diagrams, and (3) chemical reaction kinetics, which are the fundamentals of physical chemistry.

  •   物理化学特論ⅠA / Reaction dynamics and electronic states of molecules  
      岸本 直樹  
      理  
      前期集中  
      前期集中 その他 連講  

    分子の電子構造の実験・理論研究ならびに化学反応動力学を基礎から学び、分子反応ダイナミクス研究を理解できるようになることを目的とする。また、自分でもさらに学んでいくことが出来るように、基礎的な学術用語を理解する。

    It aims to be able to understand experimental and theoretical research of electronic structure of molecules and chemical reaction dynamics from the fundamentals and understand molecular reaction dynamics research. Also understand the basic scholarly terms so that you can learn even more on your own.

  •   凝縮系物理学特論 / Lecture on Condensed Matter Physics  
      佐藤 宇史  
      理  
      後期  
      後期 火曜日 2講時  

    固体電子論(結晶構造、フォノン、自由電子、バンド構造など)の基礎を復習し、金属・半導体・超伝導体における電子論や、光電子分光などの電子状態を観測する実験手法について学習する。さらに、凝縮系物理学における最近のトピックスである、トポロジカル絶縁体、高温超伝導体、原子層物質などにおいて発現する様々な特異物性と、その背後にある電子構造との関連について理解する。

    We revisit the basics of condensed-matter physics such as crystal structure, free electrons, and energy band structure, and learn electron dynamics of metals, semiconductors, and superconductors. We also study basic principle of key experimental techniques to prove electronic structure, such as photoelectron spectroscopy. Unusual physical properties of topological insulator, high-temperature superconductor, and atomic-layer materials, and their relationship with underlying electronic states will be introduced.

  •   物理化学特論ⅤA / Theory of chemical reactions in solutions  
      森田 明弘  
      理  
      前期集中  
      前期集中 その他 連講  

    多くの有機・無機・生体の化学反応は溶液内で起こり、それらの反応を分子レベルで理解するには、反応する分子を取り巻くたくさんの溶媒分子の役割を把握する見方が重要である。気相中の化学反応と溶液内の反応の違いは、溶媒効果によって生じるためである。本講義ではその溶媒効果の捉え方について、統計力学的な観点から解説する。溶媒効果には、動的な側面と静的(平衡論的)な側面が存在することを示し、拡散やブラウン運動、自由エネルギーなどの概念を解説する。さらに、それらをもとに典型的な溶液内反応(拡散律速反応、反応障壁越えを含む活性化反応、電子移動反応など)の速度論を解説する。

    Many organic, inorganic or biological reactions take place in solutions. During the reactions, solute molecules change their states in an environment surrounded by many solvent molecules. The difference between chemical reactions in gas phase and in solutions is attributed to the role of solvent. To understand the mechanism of reactions in solutions, therefore, we need to treat the role of solvent molecules from microscopic viewpoints. We classify the role of solvent into dynamical and static (equilibrium) aspects, and then deal with fundamental concepts of statistical mechanics, including diffusion, Brownian motion, and free energy. We further discuss mechanisms and kinetics of typical chemical reactions in solutions, such as diffusion-limited reactions, barrier crossing in solutions, and electron transfer.

  •   有機化学特論ⅢB / Joint Lecture on Advanced Organic Chemistry  
      林 雄二郎  
      理  
      後期集中  
      後期集中 その他 連講  

    現代有機化学の基礎を、発展的に学び・理解する。「大学院講義有機化学Ⅰ、Ⅱ(東京化学同人)」を教科書として講義を行う。

    This course aims to understand fundamentals and advanced topics in a wide range of organic chemistry: the structural and reaction chemistry of organic and organometallic compounds, synthetic organic chemistry, and natural products chemistry.

もっと見る…