シラバスの表示

凝縮系物理学特論 / Lecture on Condensed Matter Physics

後期 火曜日 2講時. 単位数/Credit(s): 2. 担当教員/Instructor : 佐藤 宇史. 学期/Semester: 後期. 開講年度/Year: 2024. 科目ナンバリング/Course code/number: SPH-CMP503B. 使用言語/Language Used in Course: 2カ国語以上.

所属講座等

電子物理学講座

授業題目

凝縮系物理学特論

Course Title

Lecture on Condensed Matter Physics

授業の目的と概要

固体電子論(結晶構造、フォノン、自由電子、バンド構造など)の基礎を復習し、金属・半導体・超伝導体における電子論や、光電子分光などの電子状態を観測する実験手法について学習する。さらに、凝縮系物理学における最近のトピックスである、トポロジカル絶縁体、高温超伝導体、原子層物質などにおいて発現する様々な特異物性と、その背後にある電子構造との関連について理解する。

Purpose/Abstract

We revisit the basics of condensed-matter physics such as crystal structure, free electrons, and energy band structure, and learn electron dynamics of metals, semiconductors, and superconductors. We also study basic principle of key experimental techniques to prove electronic structure, such as photoelectron spectroscopy. Unusual physical properties of topological insulator, high-temperature superconductor, and atomic-layer materials, and their relationship with underlying electronic states will be introduced.

学習の到達目標

 固体物理における電子論に関しての理解を深め,量子物質における物性発現機構について学習する。

Goal

We understand the electron dynamics of condensed matter, especially, the origin of characteristic physical properties in quantum materials such as topological insulator.

授業内容・方法と進度予定

01: 固体の分類: 構造、化学結合、ブラーベ格子、逆格子、ブリルアンゾーン
02: 回折実験: ブラッグの法則、X線/電子/中性子回折
03: フォノン: 比熱、熱伝導、デバイ/アインシュタインモデル
04: 自由電子ガス: 状態密度、比熱、ホール係数、常磁性、ランダウ反磁性
05: 周期ポテンシャルの効果:バンド構造、エネルギーギャップ、バンド計算、強束縛近似
06: フェルミ面: ラッティンジャーの定理、ランダウ準位、電荷/スピン密度波
07: 電子構造実験: 光電子分光、量子振動、トンネル分光
08: 半導体:バンドギャップ、化学ポテンシャル、不純物準位、デバイス応用
09: 超伝導:クーパーペア、BCS理論、完全反磁性
10: 最近のトピックスI: 高温超伝導
11: 最近のトピックスII: トポロジカル絶縁体
12: 最近のトピックスIII: 原子層物質

Contentsandprogressscheduleofthe class

01: Category of solids: structure, chemical bonding, Bravais lattice, reciprocal lattice, and Brillouin zone.
02: Diffraction techniques: Bragg’s law, x-ray diffraction, electron diffraction, and neutron diffraction.
03: Phonons: basic concept of phonons, heat capacity, heat conduction, and Debye/Einstein model.
04: Free electrons: basic concepts related to free/nearly-free electrons such as density of states, specific heat, electrical conductivity, Hall conductivity, Pauli paramagnetism, and Landau diamagnetism.
05: Periodic potential: Bloch theorem, band structure, energy gap, band calculations, and tight-binding approximation.
06: Fermi surface: concepts of Fermi surface, such as Luttinger theorem, Landau level, as well as Fermi-surface-related physical properties such as charge density wave and spin density wave.
07: Experiments to determine electronic states: basic principle and experimental data of photoemission spectroscopy, de Has van Alphen effect, and scanning tunneling spectroscopy.
08: Semiconductor: key concepts of semiconductors such as band gap, chemical potential, and impurity level, as well as an application of semiconductors as diode, transistor, and p-n junction.
09: Superconductivity: basic concepts of superconductors such as Cooper pairing, BCS theory, and perfect diamagnetism.
10: Recent topics in condensed-matter physics I: high-temperature superconductivity
11: Recent topics in condensed-matter physics II: topological insulator
12: Recent topics in condensed-matter physics III: atomic-layer material (graphene, transition-metal dichalcogenides)

成績評価方法

出席、小テスト、レポート提出、および試験によって評価を行う.

Grading

The evaluation is made by attendance, homework, and examination.

教科書および参考書

“Introduction to Solid State Physics” by Charles Kittel
“ Solid State Physics” by Ashcroft/Mermin
“Solid-State Physics, An Introduction to Principles of Materials Science”, by Harald Ibach, Hans Luth

Books required/referenced

“Introduction to Solid State Physics” by Charles Kittel
“ Solid State Physics” by Ashcroft/Mermin
“Solid-State Physics, An Introduction to Principles of Materials Science”, by Harald Ibach, Hans Luth

授業時間外学習

授業とは別に固体物理の基礎を教科書などで学ぶこと。

Preparation and review

Students should learn the basics of solid state physics from textbooks and other sources in addition to the class.

 これと関連したシラバス 学務情報システムで確認
このシラバスを共有