内容に類似性のあるシラバス

193 件ヒット (0.017秒):

  •   代数学特殊講義DⅢ / Advanced Topics in Algebra C  
      理学部非常勤講師  
      理  
      前期  
      前期 火曜日 2講時  

    代数幾何学の入門的講義を行う。体上の有限型代数の基礎事項から出発し,アフィン代数多様体について講じる.また、それらの貼り合わせとして代数多様体の概念を定義する.例として、トーリック多様体についても触れる。

    This course will provide introductory lectures on algebraic geometry. We will start with basics on algebras of finite type over a field, and we will give lectures on affine algebraic varieties. Further, we will define the notion of algebraic varieties by patching. As examples of algebraic varieties, we will talk about toric varieties.

  •   代数学特論C / Advanced Topics in Algebra C  
      理学部非常勤講師  
      理  
      前期  
      前期 火曜日 2講時  

    代数幾何学の入門的講義を行う。体上の有限型代数の基礎事項から出発し,アフィン代数多様体について講じる.また、それらの貼り合わせとして代数多様体の概念を定義する.例として、トーリック多様体についても触れる。

    This course will provide introductory lectures on algebraic geometry. We will start with basics on algebras of finite type over a field, and we will give lectures on affine algebraic varieties. Further, we will define the notion of algebraic varieties by patching. As examples of algebraic varieties, we will talk about toric varieties.

  •   代数学総説 / Advanced Topics in Algebra C  
      理学部非常勤講師  
      理  
      前期  
      前期 火曜日 2講時  

    代数幾何学の入門的講義を行う。体上の有限型代数の基礎事項から出発し,アフィン代数多様体について講じる.また、それらの貼り合わせとして代数多様体の概念を定義する.例として、トーリック多様体についても触れる。

    This course will provide introductory lectures on algebraic geometry. We will start with basics on algebras of finite type over a field, and we will give lectures on affine algebraic varieties. Further, we will define the notion of algebraic varieties by patching. As examples of algebraic varieties, we will talk about toric varieties.

  •   代数学概論C / Algebra C  
      理学部非常勤講師  
      理  
      後期  
      後期 火曜日 2講時  

    ガロワ理論は,歴史的には代数方程式の可解性の研究から発展した代数にかかわる理論であるが,現代数学においてはその思想は幾何や解析など至る所に浸透し,現代数学を理解し記述する上では不可欠なものである.この授業では,体の拡大に関する基礎事項から出発して,有限次ガロワ理論について基本的なことを学ぶ.

    Galois theory was originally developed to understand the algebraic solvability of algebraic equations. These days, the concept of the theory is widely accepted in many areas of mathematics, and it is one of the most important theories to understand modern mathematics. This course starts with basics on field extensions and covers the fundamentals on the Galois theory of finite field extensions.

  •   代数学通論 / Introduction to number theory  
      都築 暢夫  
      理  
      前期  
      前期 金曜日 3講時  

    整数論は数学において最も古い分野の一つであり、現在に至るまで盛んに研究されている。特に、19世紀から20世紀前半にかけて,代数体の整数論は大きく発展しその基礎が完成した。さらに、20世紀になると有限体上の幾何学と代数体の整数論の類似が注目され、重要なイアデアをもたらしました。それらを基本として現在の整数論は展開されている。本講義は、代数体や関数体(有限体上の代数曲線の関数体のこと)の整数論について、その基本的事項を学ぶことを目的としている。具体的には、素イデアル分解、イデアル類群、単数群、有理点、合同ゼータ関数などを話題にする。

    Number theory is one of the oldest subjects in mathematics, and it has been studied very much until now. Especially, during the 19th century and the first half of 20th century, the foundation of number theory had been completed. Moreover, in the 20th century the analogies between number theory of algebraic number fields and geometry of algebraic curves over finite fields were attracted, and it brought a lot of important ideas. The modern number theory is studied under the development. The purpose of this course is to learn the foundation of number theory in algebraic number fields and function fields (function fields of algebraic curves over finite fields) . For examples, prime ideal factorization, ideal class groups, unit groups, rational points, zeta functions, and so on.

  •   代数学特殊講義C / Introduction to number theory  
      都築 暢夫  
      理  
      前期  
      前期 金曜日 3講時  

    整数論は数学において最も古い分野の一つであり、現在に至るまで盛んに研究されている。特に、19世紀から20世紀前半にかけて,代数体の整数論は大きく発展しその基礎が完成した。さらに、20世紀になると有限体上の幾何学と代数体の整数論の類似が注目され、重要なイアデアをもたらしました。それらを基本として現在の整数論は展開されている。本講義は、代数体や関数体(有限体上の代数曲線の関数体のこと)の整数論について、その基本的事項を学ぶことを目的としている。具体的には、素イデアル分解、イデアル類群、単数群、有理点、合同ゼータ関数などを話題にする。

    Number theory is one of the oldest subjects in mathematics, and it has been studied very much until now. Especially, during the 19th century and the first half of 20th century, the foundation of number theory had been completed. Moreover, in the 20th century the analogies between number theory of algebraic number fields and geometry of algebraic curves over finite fields were attracted, and it brought a lot of important ideas. The modern number theory is studied under the development. The purpose of this course is to learn the foundation of number theory in algebraic number fields and function fields (function fields of algebraic curves over finite fields) . For examples, prime ideal factorization, ideal class groups, unit groups, rational points, zeta functions, and so on.

  •   代数学特選A / Introduction to number theory  
      都築 暢夫  
      理  
      前期  
      前期 金曜日 3講時  

    整数論は数学において最も古い分野の一つであり、現在に至るまで盛んに研究されている。特に、19世紀から20世紀前半にかけて,代数体の整数論は大きく発展しその基礎が完成した。さらに、20世紀になると有限体上の幾何学と代数体の整数論の類似が注目され、重要なイアデアをもたらしました。それらを基本として現在の整数論は展開されている。本講義は、代数体や関数体(有限体上の代数曲線の関数体のこと)の整数論について、その基本的事項を学ぶことを目的としている。具体的には、素イデアル分解、イデアル類群、単数群、有理点、合同ゼータ関数などを話題にする。

    Number theory is one of the oldest subjects in mathematics, and it has been studied very much until now. Especially, during the 19th century and the first half of 20th century, the foundation of number theory had been completed. Moreover, in the 20th century the analogies between number theory of algebraic number fields and geometry of algebraic curves over finite fields were attracted, and it brought a lot of important ideas. The modern number theory is studied under the development. The purpose of this course is to learn the foundation of number theory in algebraic number fields and function fields (function fields of algebraic curves over finite fields) . For examples, prime ideal factorization, ideal class groups, unit groups, rational points, zeta functions, and so on.

  •   大域解析学特選 / Eigenvalue maximization and space realization  
      理学部非常勤講師  
      理  
      前期集中  
      前期集中 その他 連講  

     この集中講義の主題は、「ラプラシアンの第1固有値を最大化する計量はユークリッド空間へのよい等長埋め込みをもつ」という命題である。

     コンパクト多様体において、体積1のリーマン計量をすべて動かしてラプラシアンの第1固有値を最大化する問題(問題A)、およびリーマン計量と体積要素の対(滑らかな測度距離構造)に対する類似の問題(問題B)を考える。問題Aについて、これまでに知られている結果を概観し、とくに、閉曲面上の最大化計量が球面内の極小曲面の誘導計量として実現できるというNadirashviliの定理について詳しく解説する。次に、問題Bについて、リーマン多様体の等長はめ込みとの関係を解説し、Nadirashviliの定理の類似を定式化して証明する。この定理は、問題Bが解けると、よい等長はめ込みが得られることを主張する。

     有限グラフにおいても問題A, Bと類似の問題を定式化することができ、多様体の場合と比較検討する。

    The theme of this intensive course is the proposition that ``a metric that maximizes the first eigenvalue of the Laplacian admits a good isometric embedding into a Euclidean space.''

        On a compact manifold, we consider the problem of maximizing the first eigenvalue of the Laplacian over all Riemannian metrics of volume 1 (Problem A), and a analogous problem for a pair of Riemannian metric and volume element (smooth metric-measure structure) (Problem B). Regarding Problem A, I will overview the known results, and in particular I will explain in detail Nadirashvili's theorem, which states that a maximizing metric on a closed surface can be realized as the induced metric on a minimal surface in a round sphere. Regarding Problem B, I will explain the relationship with isometric immersions of Riemannian manifolds, and formulate and prove an analogy of Nadirashvili's theorem. This theorem asserts that if Problem B is solved, a good isometric immersion is obtained.

        It is possible to formulate problems similar to Problems A and B for finite graphs, and I will compare them with the problems on manifolds.

  •   数学総合講義J / Eigenvalue maximization and space realization  
      理学部非常勤講師  
      理  
      前期集中  
      前期集中 その他 連講  

     この集中講義の主題は、「ラプラシアンの第1固有値を最大化する計量はユークリッド空間へのよい等長埋め込みをもつ」という命題である。

     コンパクト多様体において、体積1のリーマン計量をすべて動かしてラプラシアンの第1固有値を最大化する問題(問題A)、およびリーマン計量と体積要素の対(滑らかな測度距離構造)に対する類似の問題(問題B)を考える。問題Aについて、これまでに知られている結果を概観し、とくに、閉曲面上の最大化計量が球面内の極小曲面の誘導計量として実現できるというNadirashviliの定理について詳しく解説する。次に、問題Bについて、リーマン多様体の等長はめ込みとの関係を解説し、Nadirashviliの定理の類似を定式化して証明する。この定理は、問題Bが解けると、よい等長はめ込みが得られることを主張する。

     有限グラフにおいても問題A, Bと類似の問題を定式化することができ、多様体の場合と比較検討する。

    The theme of this intensive course is the proposition that ``a metric that maximizes the first eigenvalue of the Laplacian admits a good isometric embedding into a Euclidean space.''

        On a compact manifold, we consider the problem of maximizing the first eigenvalue of the Laplacian over all Riemannian metrics of volume 1 (Problem A), and a analogous problem for a pair of Riemannian metric and volume element (smooth metric-measure structure) (Problem B). Regarding Problem A, I will overview the known results, and in particular I will explain in detail Nadirashvili's theorem, which states that a maximizing metric on a closed surface can be realized as the induced metric on a minimal surface in a round sphere. Regarding Problem B, I will explain the relationship with isometric immersions of Riemannian manifolds, and formulate and prove an analogy of Nadirashvili's theorem. This theorem asserts that if Problem B is solved, a good isometric immersion is obtained.

        It is possible to formulate problems similar to Problems A and B for finite graphs, and I will compare them with the problems on manifolds.

  •   幾何学特殊講義FⅠ / Eigenvalue maximization and space realization  
      理学部非常勤講師  
      理  
      前期集中  
      前期集中 その他 連講  

     この集中講義の主題は、「ラプラシアンの第1固有値を最大化する計量はユークリッド空間へのよい等長埋め込みをもつ」という命題である。

     コンパクト多様体において、体積1のリーマン計量をすべて動かしてラプラシアンの第1固有値を最大化する問題(問題A)、およびリーマン計量と体積要素の対(滑らかな測度距離構造)に対する類似の問題(問題B)を考える。問題Aについて、これまでに知られている結果を概観し、とくに、閉曲面上の最大化計量が球面内の極小曲面の誘導計量として実現できるというNadirashviliの定理について詳しく解説する。次に、問題Bについて、リーマン多様体の等長はめ込みとの関係を解説し、Nadirashviliの定理の類似を定式化して証明する。この定理は、問題Bが解けると、よい等長はめ込みが得られることを主張する。

     有限グラフにおいても問題A, Bと類似の問題を定式化することができ、多様体の場合と比較検討する。

    The theme of this intensive course is the proposition that ``a metric that maximizes the first eigenvalue of the Laplacian admits a good isometric embedding into a Euclidean space.''

        On a compact manifold, we consider the problem of maximizing the first eigenvalue of the Laplacian over all Riemannian metrics of volume 1 (Problem A), and a analogous problem for a pair of Riemannian metric and volume element (smooth metric-measure structure) (Problem B). Regarding Problem A, I will overview the known results, and in particular I will explain in detail Nadirashvili's theorem, which states that a maximizing metric on a closed surface can be realized as the induced metric on a minimal surface in a round sphere. Regarding Problem B, I will explain the relationship with isometric immersions of Riemannian manifolds, and formulate and prove an analogy of Nadirashvili's theorem. This theorem asserts that if Problem B is solved, a good isometric immersion is obtained.

        It is possible to formulate problems similar to Problems A and B for finite graphs, and I will compare them with the problems on manifolds.

もっと見る…