内容に類似性のあるシラバス

1083 件ヒット (0.018秒):

  •   ナノ材料開発工学 / Nanomaterials Design and Engineering  
      笘居 高明, 岩瀬 和至  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    ナノ材料、ナノ材料製品の開発における、企画・製品設計・材料設計のアプローチを説明し、さらにその製造プロセスの設計について議論する。

    具体的には、社会ニーズの把握、それに応える製品構造の予測、その製品において材料に求められる機能とその達成のための材料設計について説明する。

    さらに、ナノ材料の様々な階層における構造制御のためのプロセス設計にについて説明する。

    以上のナノ材料、製品開発を題材に、化学工学の視点に基づく課題解決の方法論を学ぶ。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    The approaches for nanomaterials and their products design will be explained, and their manufacturing processes will be discussed.

    Through the lecture for nanomaterials and their product development, this course focused on the methodology of problem solving based on chemical engineering.

  •   ハイブリッド材料合成評価化学 / Synthetic Chemistry and Characterization of Hybrid Materials  
      蟹江 澄志  
      環境  
       
      後期 火曜日 4講時  

    ----------

    Google Classroom用のクラスコードは「@@@@」です。

    ----------

    人々の生活をより豊かなものとするために、材料のさらなる高機能化が求められている。ハイブリッド材料は、有機物と無機物の相反する機能、例えば有機物の柔軟性と無機物の高耐久性を兼ね揃えた性質を示す材料となり得る。本講義では、ナノ・分子原子レベルでの有機-無機界面制御に着目しつつハイブリッド材料を合成するための指針について概説するとともに、得られる材料の組織構造から特性に至るまでの評価手法について講義する。

  •   ハイブリッド材料合成評価化学 / Synthetic Chemistry and Characterization of Hybrid Materials  
      蟹江 澄志, 松原 正樹  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    人々の生活をより豊かなものとするために、材料のさらなる高機能化が求められている。ハイブリッド材料は、有機物と無機物の相反する機能、例えば有機物の柔軟性と無機物の高耐久性を兼ね揃えた性質を示す材料となり得る。本講義では、ナノ・分子原子レベルでの有機-無機界面制御に着目しつつハイブリッド材料を合成するための指針について概説するとともに、得られる材料の組織構造から特性に至るまでの評価手法について講義する。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    The development of high-performance materials is quite important for the sustainable future life. Hybrid material is a representative material exhibiting to show synergistic functions of organic and inorganic materials. This course explains design and synthesis of the hybrid materials focusing on the nano- or molecular-level interactions between organic and inorganic matters. Furthermore, this course also discusses characterization methods of the nano-level self-organized structures and the structure-dependent functions of the hybrid materials.

  •   機能無機材料化学 / Chemistry of Advanced Inorganic Materials  
      滝澤 博胤, 林 大和  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    機能無機材料の設計においては,結晶化学や状態図,固体物性等の理解が重要である。固体化学の知識を基礎として,高温,高圧,電場,磁場等の反応場制御による材料合成法や,セラミックスのキャラクタリゼーション技術,複合化・組織制御による機能発現等について体系的に講義するとともに,先端無機材料の話題について概説する。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Design of functional inorganic materials is based on the knowledge of crystal chemistry, phase equilibria, solid state physics, etc. The aims of this class are to provide introductions to inorganic synthesis under high temperature, high pressure, electric and magnetic fields, characterization of solids, and the concepts for material design by microstructure developments on the basis of solid state chemistry. The current topics of advanced inorganic materials are discussed.

  •   環境無機化学 / Environmental Inorganic Chemistry  
      YIN SHU, 長谷川 拓哉  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    単結晶、多結晶、非晶質等、種々の形態や構造で機能性を発現する無機材料に関して紹介し、製造プロセスに係わる結晶化反応、相転移、焼結反応、分解反応等の化学反応についての基礎知識を体系的に講義するとともに機能性無機材料創製の立場から、固体の表面エネルギー、超微粒子の特異な性質、無機材料の形態や凝集の制御により発現される機能性について講義し、固体化学に対する理解を深める。また、環境にやさしい、ソフト溶液反応による機能性無機材料合成の最先端技術を紹介し、機能性無機材料の設計指針について講義する。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    This course introduces single crystalline, polycrystalline, amorphous, etc., with respect to inorganic materials which express function in various forms or structures, provides lectures on the basic knowledge of chemical reaction systematically, including crystallization reaction during the production process, the phase transformation, sintering reaction, decomposition reaction etc.. Also, from the standpoint of functional inorganic material creation, it provides lectures on the surface energy of solid, unique properties of ultra-fine particles, the functionality that is expressed under the control of morphology and agglomeration of inorganic material, to help students better understand the solid-state chemistry. In addition, introduces environmentally friendly state-of-the-art technologies for functional inorganic materials synthesis by soft solution reaction to lecture on the design guidelines of functional inorganic materials.

  •   環境材料学 / Environmental Materials Science  
      横山 俊  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    エネルギー・環境問題の解決に貢献できる材料を環境材料として扱う。エネルギー・環境問題を把握した上で、グリーンケミストリーの観点を含め、環境材料の合成、機能発現、評価手法について体系的に講義し、環境問題解決には材料の機能発現だけでなく、材料の合成プロセス等の負荷低減も重要であることを学ぶ。環境材料としては、ナノ材料、触媒材料、太陽電池材料について取り上げ、先端の話題についても概説する。

    この科目ではGoogle Classroomを使用して情報を発信します。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    In this class, we treat materials that contribute to solving energy and environmental problems as environmental materials. After studying some problems regarding energy and environment, give lectures about syntheses, function expressions and evaluation methods of environmental materials based on green chemistry. From the lectures, learn that it is important not only to improve the functionality of the materials but also to reduce the environmental load on the synthesis processes for solving the problems. As environmental materials, nanomaterials, catalysts, photovoltaic cells will be taken up and advanced topics about them will be outlined.

    This class is conducted using Google Classroom.".

  •   環境無機化学 / Environmental Inorganic Chemistry  
      YIN SHU  
      環境  
       
      前期 火曜日 4講時  

    ----------

    Google Classroom用のクラスコードは「 」です。

    ----------

    単結晶、多結晶、非晶質等、種々の形態や構造で機能性を発現する無機材料に関して紹介し、製造プロセスに係わる結晶化反応、相転移、焼結反応、分解反応等の化学反応についての基礎知識を体系的に講義するとともに機能性無機材料創製の立場から、固体の表面エネルギー、超微粒子の特異な性質、無機材料の形態や凝集の制御により発現される機能性について講義し、固体化学に対する理解を深める。また、環境にやさしい、ソフト溶液反応による機能性無機材料合成の最先端技術を紹介し、機能性無機材料の設計指針について講義する。

  •   材料プロセス工学 / Material Process Engineering  
      長尾 大輔, 菅 恵嗣  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    1. 目的

     材料に希望する機能を持たせるには、分子構造からはじまって、それら集合体としての高次構造や相構造を制御する必要がある。今後産業の中心となり得るナノテク材料の合成や、それを実現するための自己組織化あるいは微細構造制御も、分子間相互作用やそれに基づく組織形成過程についての理解が必要となる。本講義では、高次構造や相構造の形成機構や過程を学ぶとともに、機能性材料の合成プロセスに関する知識を深める。

    2. 概要

     初めに相平衡や相転移に焦点をあてて出現する材料構造との関係について学び、続いて材料合成と反応との関係について理解を深める。

    3. 達成方法等

     本講義では主に以下の2項目を目的達成の目安とする。

    3-1. 高次構造や相構造制御のための基本的な材料プロセシングを説明することができる。

    3-2. 新規な材料を設計し合成する際に、上記プロセッシングを材料の機能化に役立てることができる。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    1. Purpose

    Precise control over material morphologies, which includes hieratical designs from molecules to their assemblies, is essential to develop functional materials. A variety of phenomena dominating the material morphologies, such as phase equilibrium, mass transfer and diffusion, should be understood for the development of functional materials. Reaction conditions and practical operation methods for controlling the physical properties of products, micro-scaled structures of materials and phase structures of materials will be explained in the course targeting for organic polymer materials, inorganic materials and their composites.

    2. Abstract

    Phase equilibria and phase transition are firstly focused on to learn their effect on material morphologies, and then reaction conditions are explained to understand their effect on material morphologies in the synthesis of functional materials.

    3. The following is main criteria of learning achievement in this course.

      3-1 Attainment to explain basic material processing for controlling hieratical and/or phase separated structures of materials.

      3-2 Attainment to utilize the above processing for functionalization of materials in the development of novel materials originally designed.

  •   多相系プロセス設計工学 / Multi-Phase Process Design Engineering  
      久保 正樹  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    優れた機能を有する製品を製造するためには,装置やプロセスの中で起こる現象(輸送現象といったマクロスケールの現象だけでなく,製品の物性や機能に関わるナノ・メゾスケールの現象)を十分理解し,製品の物性や機能を制御するためのプロセスの設計・制御の方法論を確立する必要がある。本講義では,化学工業プロセスをはじめ多くのプロセスが多相系であることを考慮し,表面張力や濡れなどの界面現象,界面を介しての輸送現象,異相界面が関わるナノ・メゾスケールの現象の基礎を説明するとともに,多相系プロセスの設計・制御において不可欠な現象のモデル化及び数値解析手法について講義する。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    To produce materials with various functions and high quality, it is important to acquire a correct knowledge of both macroscopic and microscopic phenomena in materials processing which determine the properties and functions of materials, and then to establish the procedure or guideline of process design and control being based on the knowledge. Since many chemical processes involve the multiphase system such as liquid/gas or liquid/liquid phases, in this lecture, interfacial phenomena such as surface tension and wetting, transport phenomena through the interface and meso-microscopic phenomena at the interface between two phases are introduced. The mathematical modeling and numerical simulation of multiphase processes are also presented.

  •   学際研究特別研修II  
      日笠 健一  
      全研究科  
      通年集中  
      通年集中 その他 連講 その他  

    学際研究特別研修Iに引き続き,学際高等研究教育院が学際科学フロンティア研究所と協力して開催する全領域合同研究交流会および FRIS/DIARE Joint Workshop において,自分の研究内容を異分野の学生・研究者に理解できるよう工夫された発表を行い,専門外の視点からの質問・議論により,発表者も含め,理解を深化させる。

もっと見る…