内容に類似性のあるシラバス

179 件ヒット (0.05秒):

  •   スピントロニクス国際特別講義Ⅱ / Basic Spintronics and Material Science II  
      須藤 祐司  
      理  
      後期  
      後期 月曜日 3講時  

    現在の材料学では、ナノスケールでの物質の構造や組織を制御して新しい機能を発現させることが重要な課題となっている。本講義では、ナノスケールの構造・組織制御に関する物理学・材料学基礎から説き起こし、様々なナノ構造に基づいて発現する新機能(主に電磁気機能)を紹介し、さらにその機能がどのようにデバイスに応用されるかを、金属や半導体という従来の枠組みを超えて講義する。

    本講義は「ナノ構造制御機能発現機構」と同時に開講する。

    ※授業は対面授業です。(マテリアル・開発系の講義室)

    ※この科目では、必要に応じて、Classroom:「ナノ構造制御機能発現機構」を使用して講義資料の提供やレポート提出を行います。

    In recent materials science, it is getting important to make new functionalities by controlling nano-scale materials structures such as metals and semiconductors. In this course, students will learn about physics and materials science to understand the relation between nano-scale structures and their functionalities. Furthermore, various examples of functionalities based on nano-scale materials structures and their spintronic device applications are introduced to help students gain the concept of nano-science.

    This class will be opened at the same time as the "Nanostructure Control Function Expression Mechanism".

    ※This class is face-to-face.

    ※Class information and reports will also be provided by the Classroom "Nanostructure Control Function Expression Mechanism".

  •   ナノ構造制御機能発現工学 / Nanostructures and Function Control in Materials  
      須藤 祐司, 大兼 幹彦, 好田 誠, 関 剛斎  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    ※対面授業

    ※この科目では、必要に応じて、Classroomを使用して講義資料の提供やレポート提出を行います。

    目的・概要

    現在の材料学では、ナノスケールでの物質の構造や組織を制御して新しい機能を発現させることが重要な課題となっている。本講義では、ナノスケールの構造・組織制御に関する物理学・材料学基礎から説き起こし、様々なナノ構造に基づいて発現する新機能(主に電磁気機能)を紹介し、さらにその機能がどのようにデバイスに応用されるかを、金属や半導体という従来の枠組みを超えて講義する。

    達成目標

    様々なナノ構造を有するデバイスの機能について、材料科学の観点から議論できるようになる。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    * This class is face-to-face.

    * In this class, we will use Classroom to provide lecture files and to submit reports, as necessary.

    Objective and overview

    In recent materials science, it is getting important to make new functionalities by controlling nano-scale materials structures such as metals and semiconductors. In this course, students will learn about physics and materials science to understand the relation between nano-scale structures and their functionalities. Furthermore, various examples of functionalities based on nano-scale materials structures and their spintronic device applications are introduced to help students gain the concept of nano-science.

    Goal

    This class is designed to help students understand and discuss the functions of devices with various nanostructures from the viewpoint of materials science.

  •   スピントロニクス国際特殊講義Ⅱ / Basic Spintronics and Material Science II  
      須藤 祐司  
      理  
      後期  
      後期 月曜日 3講時  

    現在の材料学では、ナノスケールでの物質の構造や組織を制御して新しい機能を発現させることが重要な課題となっている。本講義では、ナノスケールの構造・組織制御に関する物理学・材料学基礎から説き起こし、様々なナノ構造に基づいて発現する新機能(主に電磁気機能)を紹介し、さらにその機能がどのようにデバイスに応用されるかを、金属や半導体という従来の枠組みを超えて講義する。

    本講義は「ナノ構造制御機能発現機構」と同時に開講する。

    ※授業は対面授業です。

    ※この科目では、必要に応じて、Classroom:「ナノ構造制御機能発現機構」を使用して講義資料の提供やレポート提出を行います。

    In recent materials science, it is getting important to make new functionalities by controlling nano-scale materials structures such as metals and semiconductors. In this course, students will learn about physics and materials science to understand the relation between nano-scale structures and their functionalities. Furthermore, various examples of functionalities based on nano-scale materials structures and their spintronic device applications are introduced to help students gain the concept of nano-science.

    This class will be opened at the same time as the "Nanostructure Control Function Expression Mechanism".

    ※This class is face-to-face.

    ※Class information and reports will also be provided by the Classroom "Nanostructure Control Function Expression Mechanism".

  •   スピン機能素子 / Spintronics Devices  
      深見 俊輔, 池田 正二, 大塚 朋廣, 金井 駿  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    1. 目的

     本講義では、電子の電荷とスピン、及びそれらの状態の量子性を制御する素子を扱う。特に、学部教育に於いて学んだ物理(電磁気学、量子力学)にもとづき、電荷とスピンの二つの自由度を活用するスピン機能素子の動作原理とその応用について学ぶ。加えて、電子や光の量子状態を制御する量子機能素子とその応用を理解するために必要な基礎過程を学ぶ。これらの素子を実例に、次世代集積回路や量子コンピュータへの応用に向けた知識を習得する。

    2. 概要

     半導体・金属磁性体の材料物性、これらの積層構造・微細構造中のスピン輸送ダイナミクス、量子力学的コヒーレントダイナミクス等の基礎過程、それらを応用した機能素子について基礎から講義する。

    3 達成目標等

     スピントロニクスや量子エレクトロニクスの基礎過程とそれらを利用したスピン機能素子及び量子機能素子の動作原理について理解する。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    授業にはGoogle Classroomを利用(oohsbc6)

    1. Object

     By utilizing two degrees of electrons, charge and spin, in solid state materials simultaneously, new functional devices can be developed. This research area is referred to as spintronics. In order to understand operational principles of spintronics devices for integrated circuits and quantum computers, the fundamental spin-related phenomena in various materials will be presented.

    2. Description

     The lecture covers spin properties of semiconductor and metallic magnets, spin transport and spin dynamics in semiconductor- and metal-based structures, as well as the basic of spintronics device operation.

    3. Goal

     Understand the basic spin-related phenomena in solid state physics and their application to the spintronics devices.

  •   材料科学B / Materials Science B  
      小山 元道, 秋山 英二, 横山 俊  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

     現代社会で用いられている固体材料における様々な機能の発現メカニズムについて学び,その機能を発現,安定化,向上させる材料組成・組織制御技術に関する知識を得る.

    2.概要

     原子結合や組成,微細組織の制御に基づく材料機能の発現メカニズムを学び,構造材料,電子材料,光学材料,磁性材料,エネルギー変換材料,等の機能支配因子について論ずる.また,材料機能に深く関連する結晶構造,材料組成,微細組織等の観察・測定方法について学ぶ.

    3.達成目標等

     材料の各種機能の発現メカニズム,および,社会で使用されている各種機能材料に関する基礎知識を習得する.

    Google Classroom のコード:  snstfz4

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Object

    This lecture offers an opportunity to understand the origins of various physical and chemical functions of materials, which are necessary for the development of devices and equipment. The lecture will also focus on how to control and optimize the material functions for practical applications.

    2. Summary

    This lecture will discuss the relationship between atomic bonding/alignment in materials and various properties such as mechanical, thermal, electronic, optical, ionic, magnetic, and electrochemical properties. The operating principles of characterization techniques of morphology, structure, crystal structure, elemental composition, which are closely related to material functions, will be also lectured.

    3. Goal

    Students will understand the basic concepts of material functions and how to control them for practical applications.

    Google Classroom Code:  snstfz4

  •   材料科学Ⅱ / Materials Science II  
      湯上 浩雄, 川田 達也  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

     現代社会で用いられている構造材料,各種機能性材料を設計するために必要とされる,様々な機能の発現メカニズムとその機能を発現させる材料製造技術あるいは機能を安定化させる制御技術について学ぶ.

    2.概要

     原子結合や微細組織の制御に基づく材料機能の発現メカニズムを学び,構造材料の強度物性の発現メカニズムと微細組織制御に主眼をおいた材料強度向上技術,あるいは電子材料・光学材料,エネルギー変換材料等の機能支配因子や機能発現に必須の加工・製造方法,最後に結晶構造や材料組成,微細組織等の観察・測定方法について学ぶ.

    3.達成目標等

     各種材料に所望の機能や性能を付与するための基本知識を習得するとともに,社会で使用されている各種材料に対する基礎知識を習得する.

    4.その他

     本講義は,Google Classroomを利用する場合がある.その場合のクラスコードは「oembw2z」である.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Object

    This lecture offers an opportunity to understand the origins of various physical and chemical functions of materials, which are necessary for the development of devices and equipment. The lecture will also focus on how to control and optimize the material functions for practical applications.

    2. Summary

    This lecture will discuss the relationship between atomic bonding/alignment in materials and various properties such as mechanical, thermal, electronic, optical, ionic, magnetic, and electrochemical properties. The operating principles of characterization techniques of morphology, structure, crystal structure, elemental composition, which are closely related to material functions, will be also lectured.

    3. Goal

    Students will understand the basic concepts of material functions and how to control them for practical applications.

    4. Other

    This lecture may be held with Google Classroom (class code: oembw2z).

  •   磁気デバイス材料学 / Magnetic Device Materials  
      関 剛斎, 手束 展規, 松浦 昌志  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    物質の磁気的性質を利用して多くの磁性材料が開発され、様々な分野に応用されている。磁気の本質は電子のスピンにあるが、近年、巨大磁気抵抗効果(GMR)やトンネル磁気抵抗効果(TMR)などの電子のスピンと電荷を制御するスピントロニクスが注目を集めている。本講義ではソフト磁性材料、ハード磁性材料、磁性薄膜、さらにはスピントロニクスの物理や材料・デバイスに関わる基本特性・動作原理について概説する。

    この科目はGoogle Classroomを使用して講義資料と講義情報を発信します。

    クラスコードは 3osrzb4 です。

    Google Classroomにアクセスし、クラスコードを入力してください。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Magnetic materials have been developed using magnetic properties of various materials. Recently, spintronics is one of the attractive research areas, which is related to various kinds of magnetoresistance effects such as the giant magnetoresistance (GMR) effect and the tunnel magnetoresistance (TMR) effect. This course is dedicated to understand the basis of soft magnetic and hard magnetic materials and recent topics on nanomagnetic structures. In addition, the recent development of spintronics and its applications will be also presented.

    This course uses Google Classroom to deliver lecture materials and information.

    The class code is 3osrzb4.

    Visit Google Classroom and enter the class code.

  •   材料科学Ⅱ / Materials Science II  
      雨澤 浩史, 千葉 大地, 野村 光  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

     現代社会で用いられている固体材料における様々な機能の発現メカニズムについて学び,その機能を発現,安定化,向上させる材料組成・組織制御技術に関する知識を得る.

    2.概要

     原子結合や組成,微細組織の制御に基づく材料機能の発現メカニズムを学び,構造材料,電子材料,光学材料,磁性材料,エネルギー変換材料,等の機能支配因子について論ずる.また,材料機能に深く関連する結晶構造,材料組成,微細組織等の観察・測定方法について学ぶ.

    3.達成目標等

     材料の各種機能の発現メカニズム,および,社会で使用されている各種機能材料に関する基礎知識を習得する.

    4.本講義は,Google Classroomを利用する場合がある.その場合のクラスコードは「d7o7nce」である.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Object

    This lecture offers an opportunity to understand the origins of various physical and chemical functions of materials, which are necessary for the development of devices and equipment. The lecture will also focus on how to control and optimize the material functions for practical applications.

    2. Summary

    This lecture will discuss the relationship between atomic bonding/alignment in materials and various properties such as mechanical, thermal, electronic, optical, ionic, magnetic, and electrochemical properties. The operating principles of characterization techniques of morphology, structure, crystal structure, elemental composition, which are closely related to material functions, will be also lectured.

    3. Goal

    Students will understand the basic concepts of material functions and how to control them for practical applications.

    4. Other

    This lecture may be held with Google Classroom (class code : d7o7nce).

  •   先端スピン工学特論 / Advanced Spintronics Materials and Engineering  
      白井 正文  
      工  
       
       

    次世代の超低消費電力エレクトロニクス、大容量情報記録システム、メディカル・バイオ技術、高効率モータなどをもたらす基幹技術であるスピン工学に関する理解を深めることを目的とする。ソフト・ハード磁性材料からスピン工学デバイス応用や電子工学の新しいパラダイムの創製に至るまでの広範でかつ深い専門知識を学習する。それを通じて博士課程学生に必要とされる問題発見・設定・解決能力を修得する。

    This course aims to give deeper understandings of spintronics, which will provide ultra-low power-consumption electronics, large-scale information storage system, medical-bio applications, and high-efficiency motors in the next generation. Students will learn about comprehensive and high expertise from soft and hard magnetic materials to spintronics device applications and the manifestation of new paradigms in electronics. As a result, students will acquire the problem finding, setting, and solving abilities which are required for doctoral course students.

  •   電子物性B / Solid State Physics B  
      尾辻 泰一, 八坂 洋  
      工  
       
       

    Google Classroomのクラスコード: bzi3c3p

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    今日の情報化(IT)社会を支える半導体エレクトロニクス、光エレクトロニクスデバイスの動作原理の基礎を学ぶ。

    2.概要

     前半では、まず、半導体における電子のエネルギー帯構造や電気伝導などを中心に、電子デバイスの動作の基礎となる固体物質の基本物性を学ぶ。次いで、電子デバイスの基本要素であるダイオード、トランジスタの動作原理と基本動作特性について学ぶ。さらに、最先端電子デバイスの技術動向と将来展望を概観する。

     後半では、光エレクトロニクスデバイスの動作原理を理解する上での基礎知識を学んだ後、フォトダイオード、光変調器、発光素子等について学ぶ。さらに、多重量子井戸半導体レーザや高機能半導体レーザ等の最先端光エレクトロニクスデバイスについて概観する。

    3.達成目標等

     固体物質内での電子の電気的・光学的性質と半導体エレクトロニクス、光エレクトロニクスデバイスの動作原理の基礎を習得すると共に、最先端デバイスの動向についても理解を深める。

    1. Objective

    This course serves as an introductory course to learn about the fundamental basis of the physics and operation principles for semiconductor electronic and photonic (optoelectronic) devices which are the keys to construct the present information and communication technology society. It also gives students big interests and motivations to further study this important field more deeply in forthcoming related courses.

    2. Summary

    First, basic knowledge and the fundamental theory of semiconductor electronics, focused mainly on crystal bonds, energy bands, carrier transport, and conductivity, are given to understand the operation principles and characteristics of primitive electronic devices such as p-n junctions, bipolar junction transistors, as well as field effect transistors.

    Second, the fundamental idea and theory of semiconductor photonics, focused mainly on optical response of semiconductors and quantum electronics, are given to understand the operation principle and characteristics of primitive electronic devices such as photodiodes, optical modulators, light emitting diodes, as well as lasers.

    Throughout this course, the lecturers also present the trends in state-of-the-art electronic and photonic device technologies time to time.

    3. Goal

    The goal of this course is to understand the basic knowledge about the electrical and optical properties of electrons in solids, the operation principles of semiconductor electronic and optoelectronic devices, and the trends in cutting-edge semiconductor device technologies.

もっと見る…