内容に類似性のあるシラバス

3128 件ヒット (0.029秒):

  •   固体物性工学 / Solid State Physics  
      吹留 博一  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

     20世紀の物性物理学は自然物質の構造と機能を理解することが目的であった、21世紀に入り、物性物理の目的は新物質を原子レベルから設計・創成し、望まれる機能発現を確認することへとシフトした。所望の機能発現を目的とするモノの設計・製作は「工学」に他ならない。固体物性「工学」こそは21世紀固体物性の本流である。

     工学を基軸に据える本講義は、理学部のように「物理から技術へ」ではなく「技術から物理へ」の順序で進行する。この順序で行うもう一つの理由は時間節約のためである。技術者には物理の足場を組んでから物質の機能・応用を理解する時間的余裕がない。大切なことは固体物理の基本的な諸概念を正しく掴み、これを新技術の理解と開発の道具として使いこなすことである。本講義では数学的厳密さの前に概念の正しい理解に主眼を置く。

     講義は、今日の電子・電気工学から見て重要な物性上のいくつかのトピックスを厳選して取り上げるが、学生の研究テーマの物性的背景を取り上げることもやぶさかではないので、目的意識を持って参加してほしい。講義は毎回配布する英語のプリントに基づいて行われる。講義内容については、学部レベルの固体物理については、下に記載の教科書を自習して理解してくることが求められる。

    (アクセス方法)

    授業にはGoogle Classroomを利用する。

    学生が行うプレゼンテーションはGoogleMeetもしくはZoomを用いたリアルタイム型、もしくはオンデマンド型を考えているが、詳細は五月中旬ごろに連絡。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Solid-state physics (SSP) in the 20th century was dedicated to analyze structures and functions of natural substances. Now in this 21st century, the goal of SSP has shifted to designing and synthesizing new materials, from the atomic level, to try to demonstrate required functions. Designing and synthesizing things to realize desired functionality is nothing but engineering; SSP-based engineering should be the mainstream in SSP in this century.

       Being focused on engineering, this class will proceed in a from-engineering-to-physics manner, not from-physics-to-applications manner as they do in the faculty of science. Another reason to take this order is to save time. Engineers usually do not have enough time to master all the essentials in SSP before going to specific topics. What is important here is to have right images on basic concepts in SSP to use them as a tool to understand emerging technologies and elaborate them. Conceptual understanding comes first before mathematical rigor.

       The class will focus on several topics specially selected in terms of importance in today’s electronics and electrical engineering, but is open to those that form the physical basis of the research theme of the students. Students are required to be strongly motivated in attending the class. While the class will proceed using a printed synopsis written in English, the language itself is in Japanese. Students are required to master the minimum basis of the undergraduate solid-state physics described in the text books listed below.

    (Access)

    Google classroom will be used .

    Presentations by students may be done realtime by using Google meet or Zoom, or on-demand, The detail has not be decided yet. In the middle of May, the details wil be informed.

  •   固体電子論 / Physics of Electrons in Solids  
      梅津 理恵, 岡本 範彦, 好田 誠  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    最近の材料に利用されている多様な機能性の解明とその制御のためには、固体中の電子の挙動とそれに関する固体物理の基礎を理解することが必須である。固体中で電子、フォノン、フォトンが生み出す機能性について熱伝導現象、磁性および群論(結晶対称性)や物性テンソルなどを題材として紹介しながら固体物理学の基礎を学ぶ。

    本授業は原則英語により行う。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Solid state physics is getting important to understand the relation between various functionalities and materials. Especially, electron, phonon and photon play important to create new functionalities. In this course, students can deepen their understanding of fundamental solid state physics through various examples such as electrons, phonons, and photons in solids, including thermal conduction phenomena, magnetism, group theory (crystal symmetry), and the tensor of physical properties, as well as the fundamentals of solid state physics.

    In principle, this class will be conducted in English.

  •   電子物性A / Solid State Physics  
      佐藤 茂雄  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    情報電子デバイスやナノ電子デバイスの元になる金属,半導体,絶縁体などの物質(無機固体)の基礎的性質を理解する。

    2.概要

    物質の素材としての原子の構造から始めて,原子が集まって固体となるしくみ,原子の規則的配列構造である固体結晶の性質,固体結晶中での電子の振る舞い,金属と半導体や絶縁体との違いなどについて講義する。

    3.達成目標等

    電子物性の基礎となるバンド理論を習得して,それを土台に固体の電気伝導,磁性,光学的性質についての理解を深めることを目標とする。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    Students will learn basic properties of materials (Inorganic solid) such as metals, semiconductors, insulators, and so on, which are used to make information electronic and nanoelectronic devices.

    2. Outline

    The lecture explains structures of atoms as components of substances, mechanism in which atoms assemble and form a solid, properties of solid crystals having regular atomic arrangements, behavior of electrons in solid crystals, differences between metals, semiconductors, and insulators, and so on.

    3. Goal

    This course is intended to allow students to learn band theory as fundamental knowledge, and then to understand electrical conduction, magnetism, and optical properties of solids.

  •   物性物理原論C / Fundamentals of Nano-Science C  
      山下 太郎  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    様々な物質で発現する物性物理現象について、理解を深めることを目的とする。

    2.概要

    金属や誘電体、磁性体、超伝導体等において発現する多彩な物理現象や

    秩序状態、電場・磁場に対する応答、その微視的機構について解説する。

    3.達成目標等

    種々の物質の具体的な物性物理現象を理解すること。

    連絡や資料掲載など必要に応じ、Google Classroomを利用する。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    To understand physical phenomena emerged in various materials.

    2. Outline

    We will study the various physical phenomena, ordered states, electric/magnetic responses, and their microscopic mechanisms in metals, dielectrics, magnets, and superconductors.

    3. Learning objective

    To understand the physical properties of many kinds of materials.

    Check also google classroom.

  •   固体物性論 / Solid State Physics for Materials Science  
      好田 誠  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    ※この科目では、必要に応じて、Classroomを使用して講義資料の提供やレポート提出を行います。

    ※また、状況に応じて、ZoomかGoogle Meetを利用したオンライン講義とする場合もあります。オンライン講義などの詳細についてはClassroomのお知らせに記載します。

    1.目的

    電子の関係する先端材料の理解と開発には電子論的な知識が必須である。この分野の高学年における高度の専門分野の授業が理解できるための固体物性の基礎知識を修学する。

    2.概要

    固体中の電子の性質を理解するため,電子の自由電子的振舞い,金属および半導体のバンド構造や電子状態に基づく電気的・光学的性質を解説する。

    3.達成目標等

    この授業では、主に以下の能力を修得することを目標とする。

    ・本学科の学習・教育目標のA,B,C,Dに関する能力を含めて修得する。

    ・物性と深い関連を有する電子の基礎的量子現象,物質の電気的性質を理解する。

    ・専門科目である磁性材料学,界面物性学,電子材料学,セラミックス材料学の理解の助けになる基礎知識を体得する。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    *In this course, Classroom will be used to provide lecture materials and submit reports as needed.

    *Online lectures may also be given via Zoom or Google Meet, depending on the situation. Details on online lectures and other details will be provided in the Classroom announcement.

    1. Objective

    Electron's property in solid state is essential for understanding and developing advanced materials involving electrons. This course is designed to provide basic knowledge of solid state physics to enable students to understand advanced specialized courses in this field in their senior year.

    2. Outline

    In order to understand the properties of electrons in solids, the free electron behavior of electrons and the electrical and optical properties of metals and semiconductors based on their band structures and electronic states will be explained.

    3. Objectives

    In this class, the main objectives are to acquire the following abilities.

    To acquire abilities related to A, B, C, and D of the learning and educational objectives of the department.

    To understand basic quantum phenomena of electrons and electrical properties of materials, which are closely related to physical properties.

    To acquire basic knowledge that will help in understanding the specialized subjects of magnetic materials, interface materials science, electronic materials science, and ceramic materials science.

  •   物性物理原論B / Solid State Physics B  
      松枝 宏明  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    結晶の物性を系統的に理解するためには、周期場中の電子の挙動を学ぶ必要がある。この授業では、Blochの定理を中心に固体内の伝導電子の挙動について、その基礎的な取り扱い方を学ぶ。

    2.概要

    量子力学と物性物理原論Aで学んだ事を基にして、自由電子による金属の比熱や伝導現象を扱う。ついで、周期場中の電子に関するBlochの定理を扱い、Bloch関数の諸性質や電子のエネルギー帯形成についての一般論を学ぶ。種々の金属のバンド構造を概観し、外場による固体内のBloch電子の運動を半古典論の範囲で記述する方法を学ぶ。

    3.達成目標等

    この授業では主に以下のような能力を習得することを目標とする。

    ・金属結晶内部の電子の古典的な描像を理解する。

    ・個々の結晶の多様なバンド構造を理解する基礎を習得する。

    ・半導体・絶縁体の電子状態を記述する強結合近似を習得する。

    資料掲載など必要に応じてGoogle Classroomを利用するので、確認するようにしてください。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose and Target

     Study the basic knowledge of Bloch theorem to understand the behavior of conduction and valence electrons in periodic potential of metallic and insulating crystals.

    2. Outline

     Electric and thermal properties of free electrons in metals will be given based on the knowledge of quantum mechanics and solid state physics A.Bloch theorem in periodic potentials will be proved and applied to understand the basic properties of band structures and band gaps in various kinds of crystals. The course ends up with the brief introduction of response of conduction electrons to external electric and magnetic fields in wave packet form.

  •   凝縮系物理学特論 / Lecture on Condensed Matter Physics  
      佐藤 宇史  
      理  
      後期  
      後期 火曜日 2講時  

    固体電子論(結晶構造、フォノン、自由電子、バンド構造など)の基礎を復習し、金属・半導体・超伝導体における電子論や、光電子分光などの電子状態を観測する実験手法について学習する。さらに、凝縮系物理学における最近のトピックスである、トポロジカル絶縁体、高温超伝導体、原子層物質などにおいて発現する様々な特異物性と、その背後にある電子構造との関連について理解する。

    We revisit the basics of condensed-matter physics such as crystal structure, free electrons, and energy band structure, and learn electron dynamics of metals, semiconductors, and superconductors. We also study basic principle of key experimental techniques to prove electronic structure, such as photoelectron spectroscopy. Unusual physical properties of topological insulator, high-temperature superconductor, and atomic-layer materials, and their relationship with underlying electronic states will be introduced.

  •   有機電子材料化学 / Chemistry of Organic Electronics  
      芥川 智行  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

     π電子系有機分子の特徴を理解させた上で、それらの形成する分子集合体の結晶構造と電子構造から導かれる導電性や磁性機能を説明する。さらに、強誘電性などの発現などを含めて、有機デバイスの分子設計と将来展望について理解させる。

     有機固体の物性に関する基礎知識を習得し、分子設計と固体物性の関係を原理的に理解し、次世代有機デバイスを構築する際に必要な、分子設計から分子集合体設計に至る道筋を、化学構造式から思考し、その機能性を判断できる。次世代デバイスとして期待される分子エレクトロニクスの最先端研究に興味をもつ。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Intrinsic properties of organic p-system are firstly understood, and explain the electrical conducting and magnetic properties based on the crystal structure and electronic structure of molecular-assemblies. Further physical properties including the ferroelectricity will be explained and understand the future organic electronic devices based on the advanced molecular designs.

       Basic physical properties of organic solids will be learned, and a relationship between molecular designs and solid state physical properties will be principally understood. The load map from molecular designs to molecular assembly designs starting from chemical structures will be considered at the functionality of organic system. Future electronic devices such as molecular devices will be one of the interesting principle for device designs.

  •   低温物理工学 / Low Temperature Nano-Science  
      加藤 雅恒  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    この科目では Google Classroom を使用して、講義資料を発信します.

    1.目的

    低温での基礎物性のふるまいを理解し,低温における際立った量子現象である超伝導の概要を学ぶ.

    2.概要

    量子力学、熱力学、統計力学を駆使して,低温物性,超伝導の性質およびその物理的な考え方を学ぶ.

    3.達成目標等

    ・超伝導の性質とその物理的な考え方を理解する.

    ・物性物理学に共通する物理的なものの見方を習得する.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    To understand the behavior of basic physical properties at low temperatures and to learn about superconductivity, a prominent quantum phenomenon at low temperatures.

    2. Outline

    Students will learn the properties of low temperature properties and superconductivity and their physical concepts by making full use of quantum mechanics, thermodynamics, and statistical mechanics.

    3. Objectives

    To understand the properties of superconductivity and its physical concepts.

    To acquire the physical viewpoint common to condensed matter physics.

  •   物質物理学基礎 / Basic Solid-State Physics  
      松井 広志  
      理  
      前期  
      前期 木曜日 2講時  

    固体物理学は、熱・統計力学、量子力学をベースに築き上げられ、材料科学、電子材料などの応用分野における研究開発にとっても、基本となる学問である。新規な現象・物性を有する物質の研究が日々進められている。実際に研究活動に携わり、議論を行い、そして、学会等で発表するには、基礎的な固体物理学の知識や、考え方を身に付けておく必要がある。一般的なテキストの内容に従って講義を行い、研究活動する上で必須となる基礎事項の習得と定着を目指す。

    Solid-state physics that has been established on the basis of thermodynamics, statistical and quantum mechanics is fundamental to research and development in application fields such as material science, electronic devices. This course aims to deepen understanding the basic knowledge and concepts of solid-state physics, and helps to improve your research activity. This class will be held for Japanese students.

もっと見る…