内容に類似性のあるシラバス

1611 件ヒット (0.025秒):

  •   基盤流体力学 / Fluid Dynamics  
      佐藤 岳彦, 永井 大樹, 服部 裕司  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    流体工学の基盤となる流体力学の基礎、乱流、圧縮性流体について講義する。

    本講義は、Google Classroomを利用する場合がある。その場合のクラスコードは「aspvq35」である。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    The theoretical basis of fluid dynamics is composed of the fundamentals of fluid dynamics, the fluid dynamics of turbulent flow and compressible fluid. These basic fields of fluid dynamics are lectured in this subject.

    There are cases in which Google Classroom is used for this lecture. In that case, the classroom code is "aspvq35".

  •   流体力学Ⅱ / Fluid Mechanics II  
      石本 淳  
      工  
       
       

    Google Classroomのクラスコード(6klzk7a)は工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    【本講義にはGoogleClassroomを利用 (クラスコード: kbsuftc)】

    1.目的

    理想流体および粘性流体に関する流体力学の数理的な側面の理解を深める.

    2.概要

    理想流体では,ポテンシャル流れや渦の運動を,複素関数を用いて解析する.また,粘性流体では,基礎方程式の厳密解や境界層方程式の解法を調べる.乱流についても言及する.

    3.達成目標等

    流体力学の基礎方程式の数理的な取扱いを習熟する.

    粘性流体の流動現象の特徴と,その数学的な記述を理解する.

    [Use Google Classroom for this lecture (class code: kbsuftc)]

    1.Object of subject

    To obtain knowledge of mathematical aspects of fluid mechanics for ideal and viscous fluids.

    2.Summary of subject

    For ideal fluids, potential flows and vortex motions will be analyzed by complex functions. For viscous fluids, the exact solutions of basic equations and the boundary layer equations will be examined. The characteristics of turbulent flows will also be explained.

    3.Goal of study

    Students should understand mathematical aspects of basic equations in fluid mechanics.

    Students should understand characteristic features and mathematical expressions of viscous fluid motions.

  •   流体力学Ⅱ / Fluid Mechanics II  
      廣田 真  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    理想流体および粘性流体に関する流体力学の数理的な側面の理解を深める.

    2.概要

    理想流体では,ポテンシャル流れや渦の運動を,複素関数を用いて解析する.また,粘性流体では,基礎方程式の厳密解や境界層方程式の解法を調べる.乱流についても言及する.

    3.達成目標等

    流体力学の基礎方程式の数理的な取扱いを習熟する.

    粘性流体の流動現象の特徴と,その数学的な記述を理解する.

    本講義は,Google Classroomを利用する場合がある.その場合のクラスコードは「tk6em6k」である.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1.Object of subject

    To obtain knowledge of mathematical aspects of fluid mechanics for ideal and viscous fluids.

    2.Summary of subject

    For ideal fluids, potential flows and vortex motions will be analyzed by complex functions. For viscous fluids, the exact solutions of basic equations and the boundary layer equations will be examined. The characteristics of turbulent flows will also be explained.

    3.Goal of study

    Students should understand mathematical aspects of basic equations in fluid mechanics.

    Students should understand characteristic features and mathematical expressions of viscous fluid motions.

    This lecture will possibly use the Google Classroom. Then, the class code is "tk6em6k".

  •   流体力学Ⅱ / Fluid Mechanics II  
      伊賀 由佳  
      工  
       
       

    1.目的

    理想流体および粘性流体に関する流体力学の数理的な側面の理解を深める.

    2.概要

    理想流体では,ポテンシャル流れや渦の運動を,複素関数を用いて解析する.また,粘性流体では,基礎方程式の厳密解や境界層方程式の解法を調べる.乱流についても言及する.

    3.達成目標等

    流体力学の基礎方程式の数理的な取扱いを習熟する.

    粘性流体の流動現象の特徴と,その数学的な記述を理解する.

    4.本講義にはGoogleClassroomを利用 (クラスコード:hv3gaxz).本講義は対面で実施し,並列3クラス合同で機械第1講義室にて実施する.

    1.Object of subject

    To obtain knowledge of mathematical aspects of fluid mechanics for ideal and viscous fluids.

    2.Summary of subject

    For ideal fluids, potential flows and vortex motions will be analyzed by complex functions. For viscous fluids, the exact solutions of basic equations and the boundary layer equations will be examined. The characteristics of turbulent flows will also be explained.

    3.Goal of study

    Students should understand mathematical aspects of basic equations in fluid mechanics.

    Students should understand characteristic features and mathematical expressions of viscous fluid motions.

    4.GoogleClassroom is used (Class code: hv3gaxz). This class is held face to face gathering three parallel classes at once in Lecture room No.1.

  •   (IMAC-U) 流体力学Ⅱ / (IMAC-U)Fluid Mechanics II  
      船本 健一  
      工  
       
       

    本講義にはGoogle Classroomを利用する(クラスコード:rqgjuks).

    1.目的

    理想流体および粘性流体に関する流体力学の数理的な側面の理解を深める.

    2.概要

    理想流体では,ポテンシャル流れや渦の運動を,複素関数を用いて解析する.また,粘性流体では,基礎方程式の厳密解や境界層方程式の解法を調べる.乱流についても言及する.

    3.達成目標等

    流体力学の基礎方程式の数理的な取扱いを習熟する.

    粘性流体の流動現象の特徴と,その数学的な記述を理解する.

    This class uses Google Classroom (class code: rqgjuks).

    1.Object of subject

    To obtain knowledge of mathematical aspects of fluid mechanics for ideal and viscous fluids.

    2.Summary of subject

    For ideal fluids, potential flows and vortex motions will be analyzed by complex functions. For viscous fluids, the exact solutions of basic equations and the boundary layer equations will be examined. The characteristics of turbulent flows will also be explained.

    3.Goal of study

    Students should understand mathematical aspects of basic equations in fluid mechanics.

    Students should understand characteristic features and mathematical expressions of viscous fluid motions.

  •   天体物理学Ⅲ / Astrophysical fluid dynamics  
      田中 秀和  
      理  
      後期  
      後期 火曜日 4講時  

    流体力学の手法は、宇宙における天体現象の研究で広く用いられている。この宇宙の流体力学の特徴として、非一様な外場や自己重力の影響を受けること、超音速の流れであり圧縮性があること、衝撃波などの非線形性が顕著であること、非定常な膨張・圧縮の流体運動が多いことなどがあり、地上では見られない現象が一般的である。本講義では、この宇宙流体力学の基本的な事項を学ぶ。

    Fluid dynamics is involved in a very wide range of astrophysical phenomena. Fluid dynamics in astrophysics has several characteristics that hardly appear in flows on the earth: (1)Fluid is accelerated by non-constant external fields (e.g., gravitational and magnetic fields). (2)Flows are often super-sonic and highly compressive. (3)Strongly non-linear flows such as shock waves are often seen. This lecture deals with fundamentals of astrophysical fluid dynamics.

  •   数値流体力学 / Computational Fluid Dynamics  
      河合 宗司, 久谷 雄一  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    1.目的

    圧縮性流れの数値計算手法(CFD)の基礎学力の習得を目的とする.

    2.概要

    有限差分法の精度とエラー,中心スキームと風上スキームの意味,有限体積法(保存則と数値流束),近年の高次精度スキームなどの基礎を講義する.またこれらの数値計算手法のプログラミング法についても講義を行う.

    3.達成目標等

    圧縮性流れの数値計算手法(CFD)の基礎を習熟する.

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    1. Purpose

    The purpose of this lecture is to understand the basics of modern computational fluid dynamics (CFD) methods for compressible flow simulations, and also to acquire programming skills to program lectured numerical methods.

    2. Overview

    Accuracy and errors of finite difference methods, the meaning of central and upwind schemes, finite volume methods (conservation law and numerical flux), and recent high-order accurate numerical methods are given in the lectures. Also, we will provide lectures on programming methods based on Fortran language and reports on actual programming of lectured numerical methods.

    3. Achievement target

    Master basic relational expressions such as isentropic relations and shock wave relations.

  •   (IMAC-U) 空気力学 / (IMAC-U)Compressible Fluid Dynamics  
      河合 宗司  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    様々な圧縮性流れ現象の理解に不可欠な基礎学力の習得を目的とする.

    2.概要

    理想気体を仮定して,等エントロピー流れ,垂直衝撃波流れ,斜め衝撃波流れ,角をまわる超音速流れやノズル流れなど,空気力学の基礎を講義する.

    3.達成目標等

    等エントロピー関係式,衝撃波関係式など基本的な関係式を習熟する.

    圧縮性流れ現象の特徴を理解する.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Aim

    The aim is to acquire basic academic skills essential for understanding various compressible flow phenomena.

    2. Overview

    Under the assumption of a perfect gas, the basic theories of governing equations for compressible flows, isentropic flows, normal shock waves, oblique shock waves, Prandtl-Meyer expansion waves, and nozzle flows are given in the lectures. Detailed derivations of the governing equations, isentropic flow relations, and normal/oblique shock relations are also given.

    3. Achievement target

    Master basic relational expressions such as isentropic relations and shock wave relations.

  •   応用流体力学 / Applied Fluid Mechanics  
      石本 淳, 伊賀 由佳  
      工  
       
       

    Google Classroomのクラスコード(aeyimih)は工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    本講義(工学研究科学生用)にはGoogleClassroomを利用(クラスコード: ooukxju)

    異相界面を伴う流動現象,気液二相流,相変化,キャビテーション等が関連する混相流体力学と数値解析の基礎・応用,さらにポンプやタービンといったターボ型流体機械の基礎に関して講義する.

    特に,1) 気液二相流の流動様式と分類法,2) 二流体モデルと各種混相流モデリングの基礎,3) 分散性混相流のモデリングと数値計算法,4) 液体微粒化機構のモデリングと数値計算法 5) 流体機械の分類と役割6)ポンプでのキャビテーションの発生に関して理解することを目的としている.

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Use Google Classroom for this lecture (for Graduate School of Engineering students) (class code: ooukxju)

    This lecture will be given on the fundamentals and applications of multiphase fluid dynamics and numerical analysis related to the fluid dynamic phenomena with heterogeneous interfaces, gas-liquid two-phase flow, phase change, cavitation, and the fundamentals of turbo-type fluid machinery such as pumps and turbines. The main topics to be understand are as follows. 1) Flow pattern and classification method of gas-liquid two-phase flow, 2) Fundamentals of two-fluid model, 3) Modeling of dispersed multi-phase flow and numerical analysis, 4) Modeling of liquid atomization 5) Classification and role of fluid machinery 6) Generation of cavitation in pumps.

  •   (IMAC-U) 流体力学Ⅰ / (IMAC-U)Fluid Mechanics I  
      佐藤 岳彦  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    エンジニア・研究者の基礎知識として必要な流体運動の基礎知識,および流体力学を総合的かつ普遍的に把握する方法や考え方を学ぶ.

    2.概要

    流体の物理的性質,静水力学,圧力と速度の関係,流れが物体に及ぼす力,流体力学の数理的手法の基礎,管路内や物体まわりなどの実際の流れ現象,流れの工学的応用等,流体力学全般の基礎知識を学ぶ.

    3.達成目標等

    この授業では,主に以下のような能力を修得することを目標とする.

    ・流体運動の基本的性質を理解し,流れの物理現象を説明することができる.

    ・流体運動の解析方法や計測の基礎を理解する.

    ・流れが工学的にどのように応用されているかを理解する.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Class goals and outline

    To learn fundamentals of fluid motion and phenomena and to understand how to calculate pressures and velocities in both static and flowing fluids, forces on submerged objects, and dimensionless numbers for the design of experiments.

    2. Course outcomes

    Learning fundamentals of fluid such as physical characteristics of fluids, fluid statics, pressure and velocity of fluids, continuity equation, equation of motion, viscous flow in pipes, forces on submerged objects, and fluid applications for engineering.

    3. Learning attainment objectives

    After this course, students will demonstrate the following outcomes:

    - An understanding of fluid mechanics fundamentals and an ability to explain fluid phenomena using the Bernoulli equation, Momentum theorem, Euler’s equation, and dimensional analysis.

    - An ability to calculate velocity profiles and forces on objects submerged in flows and an understanding of engineering applications of fluid.

もっと見る…