内容に類似性のあるシラバス

485 件ヒット (0.04秒):

  •   応用物理学実験C / Experiments of Applied Physics C  
      山下 太郎  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

     応用物理学実験A、Bの知識を踏まえて、応用物理学の研究において実際に汎用的に使われている物性測定法を体験し、併せて現象を物理的に理解する。

    2.概要

     応用物理学実験CとDを合わせて、9テーマの実験を行う。2、3人のグループで各テーマの実験を6回の授業日で行う。実験を通し、種々の物性の測定法を学び、テーマに関する理解を深める。その結果をレポートにまとめて提出する。

    3.達成目標等

     ・各種機器の原理、測定法、データの取り方、解析方法等を修得する。

     ・種々の現象を物理的に理解する。

     ・実験結果を的確に整理し、その解析、考察を他の人に分かるように短時間でレポートにまとめら

    れるようになる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    This course gives students advanced experimental techniques and principles commonly required in the field of applied physics.

  •   応用物理学実験D / Experiments of Applied Physics D  
      山下 太郎  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

     応用物理学実験A、Bの知識を踏まえて、応用物理学の研究において実際に汎用的に使われている物性測定法を体験し、併せて現象を物理的に理解する。

    2.概要

     応用物理学実験CとDを合わせて、9テーマの実験を行う。2、3人のグループで各テーマの実験を6回の授業日で行う。実験を通し、種々の物性の測定法を学び、テーマに関する理解を深める。その結果をレポートにまとめて提出する。

    3.達成目標等

     ・各種機器の原理、測定法、データの取り方、解析方法等を修得する。

     ・種々の現象を物理的に理解する。

     ・実験結果を的確に整理し、その解析、考察を他の人に分かるように短時間でレポートにまとめら

    れるようになる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    This course gives students advanced experimental techniques and principles commonly required in the field of applied physics.

  •   物理学実験Ⅱ / Physics Laboratory II  
      吉澤 雅幸  
      理  
      前期  
      前期 水曜日 3講時 / 前期 水曜日 4講時 / 前期 木曜日 3講時 / 前期 木曜日 4講時  

    物理学の幅広い分野における基礎的実験を通して実験技術を学ぶとともに、物理学の理解を深める。

    The purposes of this course are to learn techniques of experimental physics in wide area and to deepen understanding of relations between experiment and theory.

  •   回折・分光学特論 / Introduction to Diffractometry and Spectroscopy on Physics  
      虻川 匡司, 寺内 正己, 那波 和宏  
      理  
      後期  
      後期 木曜日 3講時  

    結晶およびその表面の持つ対称性と構造と物性の関係を理解し,回折・分光実験からどのようにこれらの情報が得られるかを学んでもらう.特にX 線・中性子・電子線を用いた回折・分光実験について詳細に講義し,物質の静的構造と相転移現象がどのように観測できるかを理解して もらう.この分野に関するトピックスも紹介し,広く構造・物性に関して興味を持ってもらう.

    Purpose of this lecture is to learn about the relation between crystal symmetry, structure, and physical properties of materials and surfaces. To understand how to observe static as well as dynamic properties (especially phase transisions) of materials, the details about Diffractometry and Spectroscopy using x-ray, neutron, and electron will be explained in detail. Topics related to these fields will also be introduced.

  •   構造化学  
      中林 孝和, 田原 進也  
      薬  
      4セメスター  
      後期 金曜日 2講時 薬学部大講義室  

    生体分子の構造形成において重要な役割を果たす分子間相互作用について学ぶ。さらに、生体分子の構造、細胞の状態解析のための主要な手法である電子吸収・蛍光・赤外吸収・ラマン散乱・円偏光二色性・ESR・NMR・X線回折について、それらの原理を学び、生体分子の構造および細胞内状態の解析などへの応用を理解する。本科目は1年次に開講される「物理化学1」および全学教育科目「化学A」の内容を踏まえて行われる。

    This course provides students with basic knowledge of intermolecular interactions forming structures of biomolecules and the principles and concepts of a variety of spectroscopic methods for measuring biomolecular structures. The spectroscopic methods treated are X-ray diffraction, UV-Vis absorption, fluorescence, circular dichroism, IR, Raman, NMR, and ESR. Students are recommended to have finished "Physical Chemistry 1" and "Chemistry-A" before taking this course.

  •   物理光学 / Optics  
      岩井 伸一郎  
      理  
      後期  
      後期 木曜日 3講時  

    光の電磁波としての性質(振幅、周波数、位相、偏光)とその記述法と、光が物質に入射した際の干渉、回折、反射、屈折の原理を理解する。また、“色”の起源である「光と物質(絶縁体、金属、磁性体)の相互作用」の基礎を理解する。その応用として発光ダイオード、レーザー、光周波数コムなどの先端光デバイスについても学ぶ。

    Fundamental properties of light (amplitude, frequency, initial phase, polarization) as a electromagnetic wave and the principle of optics (reflection, refraction, interference, diffraction) will be introduced. In the latter part, light-matter (metal, insulator, magnet) interactions will be learned as an origin of color of materials. Moreover, optical devices (Light Emitting Diod, Laser, Optical frequency Comb) wlll be also discussed.

  •   材料分析科学 / Analytical Science for Materials  
      髙橋 幸生  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    分析技術を駆使して,材料の物性発現のメカニズム解明や物性低下・劣化等の原因究明を行うことで,新材料の設計指針を得ることができる。本講義では,材料分析の基盤となっているX線を用いた分析技術の基礎を学び,その応用についての知識を修得する。

    2.概要

    最初に、実験室光源、放射光、自由電子レーザなど種々の光源におけるX線の発生原理について解説する。次に,X線の散乱・回折の基礎ならびに構造解析の原理について解説する。さらに,X線の屈折や吸収などの光学的現象ならびにそれを利用したX線イメージング,X線吸収分光法の原理について解説する。最後に,放射光を用いた先端的分析技術について具体例を挙げて概説する。

    3.達成目標等

    ・本学科の学習・教育到達目標のA、B、C、Dに関する能力を含めて修得する。

    ・X線を用いた材料分析法の特徴について、X線の発生原理、光学現象から理解する。

    ・放射光を用いた先端的材料解析技術についての知識を得る。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    X-rays are short wavelength electromagnetic waves with high penetrating power and are essential probes for the analysis of materials. In this course, students will learn the principle of X-ray generation, optical phenomena of X-rays, and material analysis methods using X-rays.

    2. Outline

    First, the principles of X-ray generation in various light sources such as laboratory light sources, synchrotron radiation, and free electron lasers will be explained. Next, the fundamentals of X-ray scattering and diffraction and the principles of structural analysis are explained. In addition, optical phenomena such as refraction and absorption of X-rays and the principles of X-ray imaging and X-ray absorption spectroscopy using these phenomena are explained. Finally, advanced analytical techniques using synchrotron radiation will be outlined with specific examples.

    3. Objectives

    In this class, students are expected to acquire the following skills:

    ・Acquire skills related to A, B, C, and D of the learning and educational achievement goals of this department.

    ・Understand the characteristics of materials analysis methods using X-rays from the viewpoint of the principle of X-ray generation and optical phenomena.

    ・Gain knowledge of advanced material analysis techniques using synchrotron radiation.

    In this class, lecture materials and lecture information will be transmitted via Classroom.

    The class code is 4ajpbkb.

    Please access Classroom and enter the class code.

  •   凝縮系物理学特論 / Lecture on Condensed Matter Physics  
      佐藤 宇史  
      理  
      後期  
      後期 火曜日 2講時  

    固体電子論(結晶構造、フォノン、自由電子、バンド構造など)の基礎を復習し、金属・半導体・超伝導体における電子論や、光電子分光などの電子状態を観測する実験手法について学習する。さらに、凝縮系物理学における最近のトピックスである、トポロジカル絶縁体、高温超伝導体、原子層物質などにおいて発現する様々な特異物性と、その背後にある電子構造との関連について理解する。

    We revisit the basics of condensed-matter physics such as crystal structure, free electrons, and energy band structure, and learn electron dynamics of metals, semiconductors, and superconductors. We also study basic principle of key experimental techniques to prove electronic structure, such as photoelectron spectroscopy. Unusual physical properties of topological insulator, high-temperature superconductor, and atomic-layer materials, and their relationship with underlying electronic states will be introduced.

  •   応用物理学実験A / Experiments of Applied Physics A  
      山下 太郎  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

     応用物理学の研究を行うために、共通的に最低限理解・修得しておく必要のある基礎的な実験について学習する。

    2.概要

     応用物理学実験Aと応用物理学実験Bを合わせて、9テーマの実験を行う。2、3人のグループで各テーマの実験を3回の授業日で行う。実験を通し、種々の測定装置の原理、測定法を学び、テーマに関する理解を深める。その結果をレポートにまとめて提出する。

    3.達成目標等

     ・各種機器の原理、測定法、データの取り方、解析方法等を修得する。

     ・実験結果、その解析、考察を他の人に分かるようにレポートにまとめられるようになる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    This course gives students basic experimental techniques and principles commonly required in the field of applied physics.

  •   化学・バイオ工学演習B / Exercises B  
      中澤 光  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    関連する応用化学・有機化学・バイオ工学の講義より得られた知識を各種の問題に応用することにより、多面的かつ有機的に理解を深める。

    2.概要

    有機化学および生物工学関連の講義により得られた知識をもとに、有機分子、生体分子の構造決定・機能解析に用いられる方法論の基礎的な考え方、応用について演習する。界面化学および材料物性化学の講義により得られた知識をもとに、無機化学関連の構造化学、物性評価の問題の演習をする。

    3.達成目標等

    化学系研究で必須の、各種測定機器より得られる化合物・生体分子に関するスペクトルを解釈して、分子構造・機能に関する情報を得ることができる。無機化学の基本的な考え方を理解し、応用することができる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    By solving exercises in applied chemistry, organic chemistry, and biotechnology, students gain a further understanding of the knowledge obtained from related lectures.

    2. Overview

    Based on the knowledge obtained through lectures related to organic chemistry and biotechnology, students practice fundamental concepts and applications of methodologies for structure determination and functional analysis of organic molecules and biomolecules. Based on the knowledge obtained through lectures related to surface chemistry and material physical chemistry, students practice inorganic chemistry-related structural chemistry and physical property evaluation problems.

    3. Learning Goals

    Students will interpret spectra of compounds and biomolecules obtained from various measuring instruments, which are essential in chemical research, and obtain information on molecular structures and functions. Students will understand the basic concepts of inorganic chemistry and apply it.

もっと見る…