内容に類似性のあるシラバス

74 件ヒット (0.025秒):

  •   流体力学Ⅱ / Fluid Mechanics II  
      石本 淳  
      工  
       
       

    Google Classroomのクラスコード(6klzk7a)は工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    【本講義にはGoogleClassroomを利用 (クラスコード: kbsuftc)】

    1.目的

    理想流体および粘性流体に関する流体力学の数理的な側面の理解を深める.

    2.概要

    理想流体では,ポテンシャル流れや渦の運動を,複素関数を用いて解析する.また,粘性流体では,基礎方程式の厳密解や境界層方程式の解法を調べる.乱流についても言及する.

    3.達成目標等

    流体力学の基礎方程式の数理的な取扱いを習熟する.

    粘性流体の流動現象の特徴と,その数学的な記述を理解する.

    [Use Google Classroom for this lecture (class code: kbsuftc)]

    1.Object of subject

    To obtain knowledge of mathematical aspects of fluid mechanics for ideal and viscous fluids.

    2.Summary of subject

    For ideal fluids, potential flows and vortex motions will be analyzed by complex functions. For viscous fluids, the exact solutions of basic equations and the boundary layer equations will be examined. The characteristics of turbulent flows will also be explained.

    3.Goal of study

    Students should understand mathematical aspects of basic equations in fluid mechanics.

    Students should understand characteristic features and mathematical expressions of viscous fluid motions.

  •   流体力学Ⅱ / Fluid Mechanics II  
      伊賀 由佳  
      工  
       
       

    1.目的

    理想流体および粘性流体に関する流体力学の数理的な側面の理解を深める.

    2.概要

    理想流体では,ポテンシャル流れや渦の運動を,複素関数を用いて解析する.また,粘性流体では,基礎方程式の厳密解や境界層方程式の解法を調べる.乱流についても言及する.

    3.達成目標等

    流体力学の基礎方程式の数理的な取扱いを習熟する.

    粘性流体の流動現象の特徴と,その数学的な記述を理解する.

    4.本講義にはGoogleClassroomを利用 (クラスコード:hv3gaxz).本講義は対面で実施し,並列3クラス合同で機械第1講義室にて実施する.

    1.Object of subject

    To obtain knowledge of mathematical aspects of fluid mechanics for ideal and viscous fluids.

    2.Summary of subject

    For ideal fluids, potential flows and vortex motions will be analyzed by complex functions. For viscous fluids, the exact solutions of basic equations and the boundary layer equations will be examined. The characteristics of turbulent flows will also be explained.

    3.Goal of study

    Students should understand mathematical aspects of basic equations in fluid mechanics.

    Students should understand characteristic features and mathematical expressions of viscous fluid motions.

    4.GoogleClassroom is used (Class code: hv3gaxz). This class is held face to face gathering three parallel classes at once in Lecture room No.1.

  •   (IMAC-U) 流体力学Ⅱ / (IMAC-U)Fluid Mechanics II  
      船本 健一  
      工  
       
       

    本講義にはGoogle Classroomを利用する(クラスコード:rqgjuks).

    1.目的

    理想流体および粘性流体に関する流体力学の数理的な側面の理解を深める.

    2.概要

    理想流体では,ポテンシャル流れや渦の運動を,複素関数を用いて解析する.また,粘性流体では,基礎方程式の厳密解や境界層方程式の解法を調べる.乱流についても言及する.

    3.達成目標等

    流体力学の基礎方程式の数理的な取扱いを習熟する.

    粘性流体の流動現象の特徴と,その数学的な記述を理解する.

    This class uses Google Classroom (class code: rqgjuks).

    1.Object of subject

    To obtain knowledge of mathematical aspects of fluid mechanics for ideal and viscous fluids.

    2.Summary of subject

    For ideal fluids, potential flows and vortex motions will be analyzed by complex functions. For viscous fluids, the exact solutions of basic equations and the boundary layer equations will be examined. The characteristics of turbulent flows will also be explained.

    3.Goal of study

    Students should understand mathematical aspects of basic equations in fluid mechanics.

    Students should understand characteristic features and mathematical expressions of viscous fluid motions.

  •   流体力学Ⅱ / Fluid Mechanics II  
      廣田 真  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    理想流体および粘性流体に関する流体力学の数理的な側面の理解を深める.

    2.概要

    理想流体では,ポテンシャル流れや渦の運動を,複素関数を用いて解析する.また,粘性流体では,基礎方程式の厳密解や境界層方程式の解法を調べる.乱流についても言及する.

    3.達成目標等

    流体力学の基礎方程式の数理的な取扱いを習熟する.

    粘性流体の流動現象の特徴と,その数学的な記述を理解する.

    本講義は,Google Classroomを利用する場合がある.その場合のクラスコードは「tk6em6k」である.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1.Object of subject

    To obtain knowledge of mathematical aspects of fluid mechanics for ideal and viscous fluids.

    2.Summary of subject

    For ideal fluids, potential flows and vortex motions will be analyzed by complex functions. For viscous fluids, the exact solutions of basic equations and the boundary layer equations will be examined. The characteristics of turbulent flows will also be explained.

    3.Goal of study

    Students should understand mathematical aspects of basic equations in fluid mechanics.

    Students should understand characteristic features and mathematical expressions of viscous fluid motions.

    This lecture will possibly use the Google Classroom. Then, the class code is "tk6em6k".

  •   数理流体力学 / Mathematical Fluid Dynamics  
      江原 真司, 橋爪 秀利  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    本講義ではGoogle Classroomを使用して講義情報を発信します(クラスコード: nwihw6n)。

    1.目的

    先進核分裂炉、核融合炉、粒子加速器などの量子エネルギーシステムにおける熱設計の基礎となる伝熱学・流体力学およびそれらの応用としての数値解析手法を学ぶことを目的とする。

    2.概要

    伝熱学については、伝熱の基本形態である伝導・対流について、物理現象の定式化と解法を交えて学ぶ。流体力学については、理想流体の複素解析、粘性流体の運動・境界層について学ぶ。また、両者に共通する次元解析および現象を支配する無次元数について学ぶ。また、テンソル解析の基礎を理解し、粘性による応力とひずみ速度の関係を学び、ナビアストークスの式を導出する。

    3.到達目標

    伝熱学の基礎を理解すること、および支配方程式の導出過程・取扱いを習熟すること

    流体力学の基礎方程式の数理的な取扱いを習熟し、粘性流体の流動現象の特徴とその数学的な記述を理解すること

    次元解析による無次元相関式の導出法を理解すること

    テンソル解析の基礎を理解し、ナビアストークスの方程式の各項の意味を理解すること

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    In this class, lecture information will be sent via Google Classroom (class code: nwihw6n).

    1. Objectives

    The purpose of this class is to provide students with an understanding of heat transfer science and fluid dynamics, which are the basis of the design of thermal engineering system such as advanced nuclear fission reactors, nuclear fusion reactors and particle accelerators, and of numerical analysis method as their applications.

    2. Outline

    In this class, students will learn how to formulate and solve the physical phenomena of heat conduction, convection, which are the basic mechanism of heat transfer, as regards heat transfer science. Regarding fluid mechanics, students will learn complex analysis of ideal fluid and motion of viscous fluid including boundary layer, as well as dimensionless numbers that govern the phenomena. In addition, students will understand the basics of tensor analysis, learn the relationship between viscous stress and strain rate, and derive the Navier-Stokes equation.

    3. Goal

    To understand the fundamentals of heat transfer and to acquire the academic skills to derive and handle the governing equations.

    To understand mathematical aspects of basic equations in fluid mechanics, and characteristic features and mathematical expressions of viscous fluid motions.

    To understand the way to derive relationships among dimensionless numbers through the dimension analysis

    To understand the basics of tensor analysis and understand the meaning of each term in the Navier-Stokes equation.

  •   伝熱・流体の力学 / Heat Transfer and Mechanics of Fluid  
      及川 勝成  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    もの作りの基本は材料に熱や力を加えて形や特性を制御することであり,材料内部の温度場や加えられた力と変形・流動の関係を知ることが重要である.本講では,工学全般に現れる伝熱現象およびその数学的取り扱いについて学ぶ.また,流体の運動について,工学的に有用な数学モデルを紹介し,対流問題などに対する応用について学ぶ.

    2.概要

    工学問題に現れる伝熱現象をマクロな立場からモデル化する手法ならびに基礎方程式の導出方法を学び,伝熱現象を定性的ならびに定量的に評価するための厳密解ならびに近似解法について,具体的な工学問題を例に解説する.また,対流熱伝達との関連を中心に,流体力学の基礎についても講義する.

    3.達成目標等  (この授業を通して以下の能力を修得することを目標とする)

    ・ 本学科の学習・教育目標のA、B、C、Kに関する能力を含めて修得する.

    ・ 伝熱現象ならびにマクロな立場からの伝熱現象のモデル化手法を理解する.

    ・ 流体力学の基礎について理解する.

    ・ 伝熱・流れの問題に対する厳密解および近似解法について理解し応用できる能力を養う.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    The basis of manufacturing is to control the shape and characteristics by applying heat and force to the row material, and it is important to know the temperature field inside the material and the relationship between the applied force and deformation / flow.

    In this course, we focus on heat transfer phenomena appearing in engineering and their mathematical process. In addition, we introduce some mathematical models of fluid motion such as convection problems.

    2. Outiline

    Learn how to model heat transfer phenomena appearing in engineering problems from a macroscopic aspects and how to derive basic equations. Exact solutions and approximate solutions for qualitatively and quantitatively evaluating heat transfer phenomena in engineering are expound. In addition, learn the basics of fluid mechanics, focusing on convective heat transfer.

    3. Outcomes

    Understand heat transfer phenomena and modeling methods of heat transfer phenomena from a macroscopic aspect.

    Understand the basics of fluid mechanics.

    Develop the ability to understand and apply exact and approximate solutions to heat transfer and flow problems.

    This course includes the our program outcomes of A, B, C, K

  •   数学特別講義D / Mathematical analysis of the Prandtl boundary layer expansion  
      理学部非常勤講師  
      理  
      後期集中  
      後期集中 その他 連講  

    流体力学における基礎方程式である非圧縮性ナヴィエ・ストークス方程式を粘着境界条件下で考察する。流体の粘性が非常に小さい場合における固体壁近傍での解の漸近挙動を調べることは、理論的にも応用上も重要である。この授業では、その基礎となるプラントル境界層展開に対する数学理論の概要を学ぶことを目的とする。

    The incompressible Navier-Stokes equations, which is a fundamental nonlinear PDE system in fluid dynamics, are considered under the noslip boundary conditions. Investigating the asymptotic behavior of the solution around the solid wall in the vanishing viscosity limit is important both theoretically and in application. The purpose of this course is to learn the mathematical theory of Prandtl's boundary layer expansion.

  •   基盤流体力学 / Fluid Dynamics  
      茂田 正哉  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    本授業の目的は,空力応用や材料プロセスといった産業分野にみられる複雑な流体運動の本質を見抜き,予測できる直観力,そしてその制御法を設計するための基盤知識も会得することである。流体力学の定理や支配方程式といった数学的記述のみならず,実験研究による可視化画像や観察動画,および理論に裏付けられたシミュレーションによるコンピュータグラフィックスアニメーションを用いて,流体の自然な振舞いを理解し,その物理に対する洞察力を磨くことで,目的の達成に臨む。また,身近な流体にとどまらず,雷に代表されるプラズマ流体(超高温の電離気体)の特性について学ぶことで自然界への見識を広げ,それらの応用技術の知識も得ることによって新しい流体工学が果たす社会貢献についての理解を深める。これらの一連の内容を英語で聴き,議論しながら課題に取り組む経験を通して,国際舞台で活動するためのコミュニケーション能力の研鑽も兼ねた土台形成も図る。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    The purposes are for students to develop the intuition to understand the nature of flow and predict the complex fluid motions, which appear in various industries such as aerodynamic applications and material processes, and also to acquire the basic knowledge to design the control methods. Through studying Fluid Dynamics with not only the mathematical descriptions of theorems and governing equations but also visualized images and observation videos in experiments and computer graphic animations of simulations based on theories, students improve their abilities to discuss the natural behavior of fluid and develop their insights into physics of fluid for achieving those purposes. By learning not only about normal fluids but also about plasma fluids (very high-temperature ionized gases), such as lightning, students will broaden the insight into the nature and deepen the understanding of the contributions that new fluid mechanics can make to society by acquiring knowledge of their applied technologies. Simultaneously, this course aims to polish communication skills and to build the foundations for students to play important roles on the global stage through their experiences of listening to the lectures and having discussions to solve the problems in English.

  •   応用数理特殊講義B / Mathematical analysis of the Prandtl boundary layer expansion  
      理学部非常勤講師  
      理  
      後期集中  
      後期集中 その他 連講  

    流体力学における基礎方程式である非圧縮性ナヴィエ・ストークス方程式を粘着境界条件下で考察する。流体の粘性が非常に小さい場合における固体壁近傍での解の漸近挙動を調べることは、理論的にも応用上も重要である。この授業では、その基礎となるプラントル境界層展開に対する数学理論の概要を学ぶことを目的とする。

    The incompressible Navier-Stokes equations, which is a fundamental nonlinear PDE system in fluid dynamics, are considered under the noslip boundary conditions. Investigating the asymptotic behavior of the solution around the solid wall in the vanishing viscosity limit is important both theoretically and in application. The purpose of this course is to learn the mathematical theory of Prandtl's boundary layer expansion.

  •   数学総合講義F / Mathematical analysis of the Prandtl boundary layer expansion  
      理学部非常勤講師  
      理  
      後期集中  
      後期集中 その他 連講  

    流体力学における基礎方程式である非圧縮性ナヴィエ・ストークス方程式を粘着境界条件下で考察する。流体の粘性が非常に小さい場合における固体壁近傍での解の漸近挙動を調べることは、理論的にも応用上も重要である。この授業では、その基礎となるプラントル境界層展開に対する数学理論の概要を学ぶことを目的とする。

    The incompressible Navier-Stokes equations, which is a fundamental nonlinear PDE system in fluid dynamics, are considered under the noslip boundary conditions. Investigating the asymptotic behavior of the solution around the solid wall in the vanishing viscosity limit is important both theoretically and in application. The purpose of this course is to learn the mathematical theory of Prandtl's boundary layer expansion.

もっと見る…