内容に類似性のあるシラバス

184 件ヒット (0.013秒):

  •   地球惑星物質科学特論Ⅲ / Introduction to Thermophysical Properties of Planetary Materials  
      中村 智樹, 理学部非常勤講師  
      理  
      通年集中  
      通年集中 その他 連講  

    天体の温度や惑星探査機の熱設計などに関する実際の事例に沿いながら、固体物質の内部および物質間の伝熱を物理的に理解する。これにより惑星物質科学の重要パラメータである熱特性や温度、熱史の考え方を養う。

    Students will gain an understanding of physics of heat transfer within and between solid materials, following case examples of the temperature of celestial bodies, the thermal design of planetary probes, etc. This will help students to develop the concept of thermal properties, temperature, and thermal history, which are important parameters in planetary materials science.

  •   地球惑星物質科学特殊講義Ⅲ / Introduction to Thermophysical Properties of Planetary Materials  
      中村 智樹, 理学部非常勤講師  
      理  
      通年集中  
      通年集中 その他 連講  

    天体の温度や惑星探査機の熱設計などに関する実際の事例に沿いながら、固体物質の内部および物質間の伝熱を物理的に理解する。これにより惑星物質科学の重要パラメータである熱特性や温度、熱史の考え方を養う。

    Students will gain an understanding of physics of heat transfer within and between solid materials, following case examples of the temperature of celestial bodies, the thermal design of planetary probes, etc. This will help students to develop the concept of thermal properties, temperature, and thermal history, which are important parameters in planetary materials science.

  •   エネルギー工学 / Energy Technology  
      青木 秀之  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    「移動現象論」に引き続き、熱機器や反応器を設計する際に必要となるエネルギー工学の基礎および物質移動の基礎知識を修得する。「移動現象論」と「エネルギー工学」のセットで移動論が完結する。

    2.概要

    工業プロセス内では流体あるいは固体の流れがあり、加熱・冷却される場合が数多い。熱と物質移動の解析によりプロセス設計・操作の最適化を図ることは化学工学の基礎でもある。本授業により熱や物質を扱う機器の原理およびその効率化向上策などを学ぶ。

    3.達成目標等

    この授業では、主に以下のような能力を修得することを目標とする。

    ・化学工業プロセスを高効率で操作するために、熱や物質移動現象を理解し解析できる。

    ・熱伝導方程式の誘導と定常・非定常解の解析ができる。

    ・熱機器の原理を理解し、簡単な設計法を展開できる。

    ・物質移動現象の原理を理解し、その解析ができる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    Following the course, Transport Phenomena, students learn basic heat and mass transfer which are required to design the thermal equipment and reactor. The set of "Transport Phenomena" and this "Energy Engineering" complete the "Rate Processes".

    2. Summary

     Solid and fluid flow is generally used in industrial process with heating and cooling. To optimize the process design and its operation, analysis of heat and mass transfer is required. This course provides students with principle of equipment related with energy and mass transfer, and improvement of the equipment.

    3. Target

    Targets of this course are:

    1) Students understand the phenomena of heat and mass transfer for effective operation of chemical industrial plant.

    2) Students can derive heat conduction equation from Fourier's law, and calculate steady and unsteady heat conduction.

    3) Students understand the principle of thermal equipment and can conduct basic designing of the equipment.

    4) Students understand the principle of mass transfer behavior and calculate mass transport phenomena.

  •   伝熱学 / Heat Transfer  
      小原 拓  
      工  
       
       

    Google Classroomのクラスコードは i5cth6x です。2024年度は対面(機1)で授業を行いますが、資料の配布にClassroomを使います。

    1. 目的 

    機械工学、化学工学、電気・電子工学、環境工学等の工学分野において熱エネルギー機器設計の基礎となる、伝熱学の理解を目的とする。温度差を伴う熱エネルギーの移動現象を対象にして、形態の異なる各伝熱メカニズムの基礎式とその数理解法、工業機器への応用事例を、具体的な演習を含めて修得する。

    2. 概要 

    伝熱の基本三形態である熱伝導、対流、放射について、物理現象の定式化と解法、現象を支配する無次元数について学ぶ。さらに、加熱・冷却機器、空調機器、熱交換器など実用的な工学機器設計への応用手法について修得する。

    3. 達成目標等 

    伝熱学の基礎を理解し、工業、工学分野における熱エネルギー機器の最適設計のための学力を修得する。

    The class code of Google Classroom is i5cth6x. This Classroom is utilized to distribute the handout.

    1. Objectives 

    The purpose of this class is to provide students with an understanding of heat transfer science, which is the basis for the design of thermal energy equipment and devices in engineering fields such as mechanical engineering, chemical engineering, electrical and electronic engineering, and environmental engineering. Students will learn the basic equations of the heat transfer mechanisms driven by a temperature difference. They will also learn how to solve the equations mathematically and how to apply the equations to industrial equipment, including specific exercises.

    2. Outline 

    In this class, students will learn how to formulate and solve the physical phenomena of heat conduction, convection, and radiation, which are the three basic forms of heat transfer, as well as the dimensionless numbers that govern the phenomena. In addition, students will learn how to apply them to the design of practical engineering equipments such as heating and cooling equipment, air conditioning equipment, and heat exchangers.

    3. Objectives 

    To understand the fundamentals of heat transfer and to acquire the academic skills to optimize the design of thermal energy devices in industry and engineering.

  •   建築熱・空気環境 / Building Thermal Environment and Indoor Air Quality  
      後藤 伴延  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的:熱的・空気的に良好な室内環境を,夏冬を通じて形成・維持するための基礎知識の修得を目的とする。

    2.概要:室内の熱環境・空気環境を計画するための基礎となる建物の換気,熱特性,湿気・結露の理論および計算法,健康・快適性の観点から要求される環境条件,それを実現するための建築・設備的手法,実現された環境を評価するための方法について講義する。また,問題演習によって理解を深める。

    3.達成目標等:室内に良好な熱的・空気的な環境を形成し維持するための基礎知識の修得。

    Microsoft TeamsかGoogle Meetを使用。接続先URLはGoogle Classroomで通知。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective: To acquire fundamental knowledge of building envelop and HVAC for providing good indoor climate and air quality

    2. Outline: This course comprises lectures and exercises regarding theories and calculating methods of ventilation and heat/moisture transfer, indoor environment requirements for occupants' comfort and health, building and HVAC design technique to satisfy the requirements, and evaluation technique of existing indoor environment.

    Microsoft Teams or Google Meet will be used. The URL will be notified by Google Classroom.

  •   宇宙空間計測学特論Ⅰ / Fundamentals of visible, infrared and ultraviolet spectroscopy, radio and radar observations, and computer simulation for solar system research  
      坂野井 健, 土屋 史紀  
      理  
      前期  
      前期 火曜日 2講時  

    太陽系天体,すなわち惑星や衛星の周辺プラズマや大気の変動現象により生成される放射エネルギーは,可視・赤外・紫外線や電波の形で放射される.この観測から,天体やその周辺で発生する物理プロセスをリモートセンシングすることが可能である.東北大学は,オーロラや惑星微量気体の検出など地球・惑星電磁圏・大気圏の変動現象の観測や大気組成の地上と宇宙からの観測により,数々の成果を挙げてきた.

    また,近年の計算機の性能向上とシミュレーション技術の発達により,太陽系天体近傍の物理現象を定量的に理解することが可能となってきた.

    本講義では,太陽系天体の物理現象の解明を将来さらに発展させていくに必要な,光・赤外や電波・レーダー計測技術,地球・惑星観測に不可欠な人工衛星・惑星探査機技術,ならびにコンピュータシミュレーション技術について,その基礎を学ぶ.

    Energy generated in the solar system, such as planetary atmospheres, small bodies, and surrounding plasmas is emitted as the electromagnetic waves in the visible, infrared, ultraviolet and radio ranges. Remote-sensing observations of these waves are useful to understand the physical processes in/around the solar system objects. Tohoku University has produced many results by the remote-sensing of physical processes in the earth, and planetary magnetospheres, such as the measurements of aurora, planetary trace gases, and atmospheric compositions from the ground and space.

    In addition, recent improvements in computer performance and the development of simulation technology bring us quantitative understanding of physical phenomena in the solar system.

    In this lecture, we will learn the basics of optical, infrared, ultra-violet, radio wave and radar measurement techniques and satellites and planetary probe engineering which are essential for the earth and planetary observations. We will also learn computer simulation techniques. These techniques are necessary for further elucidation of the physical phenomena in the solar system.

  •   凝縮系物理学特論 / Lecture on Condensed Matter Physics  
      佐藤 宇史  
      理  
      後期  
      後期 火曜日 2講時  

    固体電子論(結晶構造、フォノン、自由電子、バンド構造など)の基礎を復習し、金属・半導体・超伝導体における電子論や、光電子分光などの電子状態を観測する実験手法について学習する。さらに、凝縮系物理学における最近のトピックスである、トポロジカル絶縁体、高温超伝導体、原子層物質などにおいて発現する様々な特異物性と、その背後にある電子構造との関連について理解する。

    We revisit the basics of condensed-matter physics such as crystal structure, free electrons, and energy band structure, and learn electron dynamics of metals, semiconductors, and superconductors. We also study basic principle of key experimental techniques to prove electronic structure, such as photoelectron spectroscopy. Unusual physical properties of topological insulator, high-temperature superconductor, and atomic-layer materials, and their relationship with underlying electronic states will be introduced.

  •   建築数理基礎論Ⅱ / Theoretical Basis of Mathematics and Dynamics in Building Engineering II  
      後藤 伴延, 石田 泰之  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    目的:都市・建築分野における熱・空気環境のシミュレーションに用いられる基本的な手法を習得する。

    概要:応答係数法による動的熱負荷計算,熱回路網計算,有限体積法による伝熱解析の3つについて講義する。有限体積法は流体解析の解法としても利用可能である。

    Microsoft TeamsかGoogle Meetを使用。接続先URLはGoogle Classroomで通知。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Objective: To learn some fundamental techniques on heat and mass transfer simulations in architectural field

    Outline: This course comprises lectures on dynamic heat load simulation, thermal network simulation, and heat transfer analysis by finite volume method. The finite volume method can also be applied for fluid analysis.

    Microsoft Teams or Google Meet will be used. The URL will be notified by Google Classroom.

  •   熱・物質輸送論 / Heat and Mass Transfer  
      菊川 豪太  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    本講義はGoogle Classroomを使用します.

    クラスコード: y4ojaiu

    1.目的 

    複雑な伝熱・物質輸送のメカニズムを幅広いスケールに渡って学ぶ.

    2.概要 

    伝熱学で習得した伝熱現象の基礎知識を踏まえ,幅広いスケールに渡って熱・物質輸送現象のメカニズムを講義する.

    3.達成目標等 

    ・ミクロスケールから熱力学の概念を捉え直し,統計物理学の基礎的概念を理解する.

    ・熱・物質輸送現象をミクロ・マクロスケールに渡って原理的に理解し,応用について考察できる.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    This class uses Google Classroom.

    Class code: y4ojaiu

    In this course, heat and mass transport phenomena are discussed from a broader viewpoint ranging from microscale to macroscale. Thermodynamic quantities are revisited with microscopic descriptions. The basic principles of statistical physics are given in order to understand the relationship between macroscopic thermodynamics and microscopic mechanics. Based on the above basics, the derivation of governing equations for mass transport phenomena, essential analogy between heat transfer and mass transfer, and application cases in the engineering are discussed.

  •   地球惑星物性学Ⅰ / Physics and Chemistry of the Earth and Planetary Interiors  
      鈴木 昭夫, 坂巻 竜也  
      理  
      後期  
      後期 月曜日 2講時  

    地球内部を構成する物質の構造と物性について学び,これらの物質と地球の起源・進化・内部構造との関係について理解することを目的とする.

    This course covers mineral physics of the Earth and planetary materials to help students understand the Earth and planetary interiors.

もっと見る…