内容に類似性のあるシラバス

87 件ヒット (0.039秒):

  •   電子物理学特殊講義 / Advanced Lecture on Physics of Electrons  
      若林 裕助  
      理  
      後期  
      後期 金曜日 3講時  

    In this course, students will understand the frontier of condensed matter physics. The lecture is given by more than ten professors in our Condensed Matter Physics group. They provide explanations of the recent progress in condensed matter physics, such as high-temperature superconductors, quantum magnets, topological insulators, and other quantum materials. The lecture is also expanded to the advanced experimental techniques such as angle-resolved photoemission spectroscopy, x-ray scattering, crystal growth, and so on.

    In this course, students will understand the frontier of condensed matter physics. The lecture is given by more than ten professors in our Condensed Matter Physics group. They provide explanations of the recent progress in condensed matter physics, such as high-temperature superconductors, quantum magnets, topological insulators, and other quantum materials. The lecture is also expanded to the advanced experimental techniques such as angle-resolved photoemission spectroscopy, x-ray scattering, crystal growth, and so on.

  •   凝縮系物理学特論 / Lecture on Condensed Matter Physics  
      佐藤 宇史  
      理  
      後期  
      後期 火曜日 2講時  

    固体電子論(結晶構造、フォノン、自由電子、バンド構造など)の基礎を復習し、金属・半導体・超伝導体における電子論や、光電子分光などの電子状態を観測する実験手法について学習する。さらに、凝縮系物理学における最近のトピックスである、トポロジカル絶縁体、高温超伝導体、原子層物質などにおいて発現する様々な特異物性と、その背後にある電子構造との関連について理解する。

    We revisit the basics of condensed-matter physics such as crystal structure, free electrons, and energy band structure, and learn electron dynamics of metals, semiconductors, and superconductors. We also study basic principle of key experimental techniques to prove electronic structure, such as photoelectron spectroscopy. Unusual physical properties of topological insulator, high-temperature superconductor, and atomic-layer materials, and their relationship with underlying electronic states will be introduced.

  •   光物性学特論Ⅰ / Nonlinear and ultrafast material science  
      岩井 伸一郎, 理学部非常勤講師  
      理  
      後期  
      後期 金曜日 2講時  

    光と物質の相互作用において、光の強度が十分に弱い場合、物質の光に対する応答は、光強度には依存しない。太陽光や蛍光灯の下での物質の色や光沢は、このような「線形応答」の枠内で理解できる。しかし、レーザー光のようなの高い電場強度をもつ光に対しては、光電場の二次以上に比例する分極の効果が現れる。本講義では、非線形吸収や高調波発生(第二高調波発生、光整流)などの非線形光学効果の基本的な事項について学習する。さらに、近年のアト秒科学(2023年度ノーベル物理学賞)に至る超短パルスレーザー技術の発展は、光のエネルギーによって物質の温度が上昇する(あるいは熱によって物質は損傷する)遥か以前に、物質に強電場を印加することを可能にした。こうした最先端の光技術によって実現した、”非熱意的な”高エネルギー状態は、物質科学の研究を新たなフェーズに移行させつつある。ここでは、量子物質(超伝導体などの電子の量子効果や量子多体効果が支配する物質)の光・テラヘルツ制御(光誘起相転移、高次高調波発生、光強電場効果)についても紹介する。

    In light-matter interactions, the response of a material to light is independent of light intensity if the light intensity is weak. The color and gloss of materials under the sun can be understood within the framework of such a 'linear response'. However, for light with a high electric field intensity, such as laser light, light-induced polarizations are proportional to more than the second order of the optical electric field. In this lecture, the basic topics of non-linear optical effects such as non-linear absorption and harmonic generation (second harmonic generation, optical rectification) will be studied. Furthermore, recent developments in ultrashort pulsed laser technology leading to attosecond science (Nobel Prize in Physics 2023) have made it possible to apply a strong electric field to materials before the temperature of the matter is increased by the energy of light (or the materials is damaged by heat). These 'non-thermal' high-energy states, made possible by state-of-the-art light technology, are moving materials science research into a new phase. Here, the optical (or terahertz field) control of quantum matter (photoinduced phase transitions, higher harmonic generation and photo-intense electric field effects) in quantum matter (matter dominated by quantum effects of electrons and quantum many-body effects, such as superconductors) will also be presented.

  •   強相関電子物理学特論 / Lecture on strongly correlated electron systems  
      池本 夕佳, 藤森 伸一, 理学部非常勤講師  
      理  
      後期集中  
      後期集中 その他 連講  

    凝縮系物質の電子状態の基礎を復習し、放射光を用いた光電子分光および赤外分光、それらのその応用研究について学習する.特に,有機半導体、強相関有機導体、強相関f電子系化合物などのトピックスについて講義する。強相関電子系と関係して、s、p、dおよびf電子系で発現する様々な現象とその背景にある物理現象を理解する。

    We revisit the basics of electronic states of condensed matters and learn the experimental techniques such as photoemission spectroscopy and infrared spectroscopy using synchrotron radiation sources. Hot topics for organic transistors, heavy-fermion systems, and organic conductors will be discussed. Various interesting phenomena arising from s, p, d and f electron systems as well as the physics behind them will be introduced.

  •   金属物理学特論 / Lecture on the electronic and magnetic properties in molecular materials  
      佐々木 孝彦, 井口 敏, 野島 勉  
      理  
      後期  
      後期 水曜日 3講時  

    π電子系として知られる分子性物質は,d電子系,f電子系である無機化合物と並んで固体電子物性の標準的な研究対象として認識されている.その基礎として,しばしば100 個を超える原子が単位胞に存在する結晶構造の複雑さとは裏腹に,出発点となる電子構造が簡単な強束縛近似で表され単純である.一方で,強相関電子系としての強い電子間相互作用や電子-格子相互作用の効果が合わさることで多様な電子物性や磁気的性質が出現する.本授業では,分子が構成要素となった固体である分子性物質,とくに電気伝導性を示す分子性導体を既習の固体電子論のモデル物質として取り上げ,その電子物性と関連する磁性現象について学び,理解を深める.さらにいくつかの研究トピックスを紹介し,その物理的な意味と重要性を学ぶ.

    なお2023年度開講の磁気物理学特論-分子性物質の電子的・磁気的物性-と重複する内容を含むため,2023年度磁気物理学特論受講者は履修においては留意すること.

    This course covers the electronic and magnetic properties with strongly correlated nature in the molecular materials. A series of molecular conductors is regarded as one of the strongly correlated electrons system. This course provides an overview of the electronic and magnetic properties observed in molecular materials as a model system in the text book of the solid state physics. Based on the general consideration studied in the first half of the course, several research topics on the intriguing electronic and magnetic phenomena which are actively studied at present are explained for understanding the physical meaning and importance in the condensed matter physics.

    Note that this course in 2024 includes overlaps with Advanced Magnetic Physics -Electronic and Magnetic Properties of Molecular Materials-, which will be offered in 2023, so students taking Advanced Magnetic Physics in 2023 should be aware of this.

  •   科学の最前線Ⅰ / Frontiers in Science I  
      岩渕 司  
      理  
      後期  
      後期 水曜日 5講時  

    This is a course introducing recent topics in various areas of science including quantum mechanics and quantum technology. Lectures are given by 13 faculty members from all the departments (Mathematics, Physics, Astronomy, Geophysics, Chemistry, and Earth Science) in Graduate School of Science. Each faculty member discusses up-to-date topics in his/her specialty. The lectures are prepared for non-experts and thus this course is an outstanding opportunity to obtain familiarity with areas other than the students' specialties. The class meets every Wednesday, 4:20-5:50 pm.

    This is a course introducing recent topics in various areas of science including quantum mechanics and quantum technology. Lectures are given by 13 faculty members from all the departments (Mathematics, Physics, Astronomy, Geophysics, Chemistry, and Earth Science) in Graduate School of Science. Each faculty member discusses up-to-date topics in his/her specialty. The lectures are prepared for non-experts and thus this course is an outstanding opportunity to obtain familiarity with areas other than the students' specialties. The class meets every Wednesday, 4:20-5:50 pm.

  •   物性物理学Ⅲ / Magnetism and Superconductivity  
      木村 憲彰  
      理  
      前期  
      前期 月曜日 2講時  

    磁性及び超伝導は、物質中の電子が織りなす集団的な量子現象であり、いずれもその本質は電子の相互作用にある。この授業では、磁性と超伝導の基礎について微視的、巨視的な観点から解説し、物質中の電子の振舞いがいかにして物性を決定づけているかを学ぶ。

    Magnetism and superconductivity are collective quantum phenomena of electrons in materials, and their essence lies in the interaction of electrons. In this course, basic concepts of magnetism and superconductivity will be explained from both microscopic and macroscopic perspectives, and students will learn how the behavior of electrons in matter determines their physical properties.

  •   固体相関物理学特論 / Lecture on Strongly Correlated Electron Systems in Condensed Matter Physics  
      木村 憲彰, 水上 雄太  
      理  
      前期  
      前期 月曜日 3講時  

    本講義では磁性を中心とした固体中の電子相関に関する基本的な事項について、局在・遍歴の両視点から解説する。具体的な物質群としてd電子系、f電子系を取り上げるが、あえてd電子系を局在の立場から、f電子系を遍歴の立場から眺めることで、これら強相関電子系の理解を深める。

    This course provides a basic understanding of electron correlation in solids, focusing on magnetism. The lecture explains the subject from both localized and itinerant perspectives. Specific material groups such as d-electron and f-electron systems are discussed, with d-electron systems viewed from a localized perspective and f-electron systems from an itinerant perspective. This approach enhances the understanding of these strongly correlated electron systems.

  •   物性物理学特論 / The current research in Physics in IMR and IMRAM  
      小野瀬 佳文  
      理  
      後期  
      後期 木曜日 5講時  

    学部前半で学ぶ物理の基礎階段を上ってたどり着いた固体物理の名の扉を開けると、そこには物性物理、材料科学、ナノサイエンスの広大な地平が開けている。本講義では、金研と多元研で行われている最先端の研究を教員が1週1話形式でわかりやすく紹介し、今後の学習と研究のためのモチベーションを学生が持てるようにするのが目的である。

    The knowledge and courses which have been taken in the undergraduate course should be extended for the researches in the 4th year under graduate course in each laboratory and in the graduate course. Such extension is spreading over varieties of fields in physics such as fundamental condensed matter physics, material science and nano-science. This lecture will guide you to overview the present status of the most advanced researches in the well-known research institutes, IMR and IMRAM. The lecturers from the IMR and IMRAM will give a topical review for some topics. It will help to students to make a map for their research life.

  •   固体物性基礎論 / Elementary Solid State Physics  
      清水 幸弘  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    1.目的

     固体物性論は、物性科学の重要な基本概念の1つである。また、新規材料開発やそれらのデバイスへの応用を行うための基礎となる。この講義では,固体物性論における中心的課題の1つである固体電子論に焦点をあて、その基礎と第一原理手法による電子状態計算について理解することを目的とする。

    2.概要

    固体の中の多数の電子の電子状態に関する講義を行う。

    固体の中の電子は、電子間のクーロン相互作用により多粒子状態となり、磁性や超伝導などの多彩な物性を示す。

    本講義では、はじめに多粒子状態を取り扱う手法や近似法について学ぶ。次に強結合模型と第一原理計算手法について学び、それらの計算結果から理解できる固体物性について解説する。

    3.達成目標等

    ・ 多電子状態を記述する手法と近似方法を習得する。

    ・ 強結合模型とその物性を理解する。

    ・ 第一原理計算手法の概要とその計算結果から理解できる物性について学ぶ。

    講義は対面形式を基本とし、お知らせなどにGoogle Classroom(クラスコード:wh6yiny)を用いる。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    1. Purpose

     Solid state physics is one of the most important fundamental concepts in condensed matter science. It is also the basis for the development of new materials and their application to devices. In this lecture, we focus on one of the central issues in solid state physics, the solid state electron theory, and aim to understand its fundamentals and the electronic structure calculations by first-principles methods.

    2. Outline

    Lectures on the electronic structure of a large number of electrons in solids will be given.

    Electrons in solids are in many-particle states due to Coulomb interactions among electrons, and exhibit various physical properties such as magnetism and superconductivity.

    In this lecture, we will first learn the methods and approximations to deal with many-particle states. Next, we will learn about the strong coupling model and first-principles calculation methods, and explain the solid-state properties that can be understood from the results of these calculations.

    3. Objectives

    To master the method of describing and approximating multi-electron states.

    To understand the strong coupling model and its physical properties.

    Learn about first-principles calculation methods and the physical properties that can be understood from the results of these calculations.

    Lectures will be given in a face-to-face format and Google Classroom (class code:wh6yiny) will be used for announcements.

もっと見る…