内容に類似性のあるシラバス

291 件ヒット (0.012秒):

  •   天体物理学Ⅱ / The fundamentals of electromagnetic wave radiation and propagation processes  
      樫山 和己  
      理  
      前期  
      前期 木曜日 3講時  

    宇宙のガス、特にプラズマにおける電磁波の放射過程や伝播過程の基礎を身につけることを目標とします。対象は、電磁気学の基礎を学んだ学部3年生以上の学生です。

    The goal is to acquire a foundational understanding of the radiation and propagation processes of electromagnetic waves in space gases, particularly in plasmas. The target audience consists of undergraduate students who have studied the fundamentals of electromagnetics and are at least in their third year of study.

  •   宇宙空間計測学特論Ⅰ / Fundamentals of visible, infrared and ultraviolet spectroscopy, radio and radar observations, and computer simulation for solar system research  
      坂野井 健, 土屋 史紀  
      理  
      前期  
      前期 火曜日 2講時  

    太陽系天体,すなわち惑星や衛星の周辺プラズマや大気の変動現象により生成される放射エネルギーは,可視・赤外・紫外線や電波の形で放射される.この観測から,天体やその周辺で発生する物理プロセスをリモートセンシングすることが可能である.東北大学は,オーロラや惑星微量気体の検出など地球・惑星電磁圏・大気圏の変動現象の観測や大気組成の地上と宇宙からの観測により,数々の成果を挙げてきた.

    また,近年の計算機の性能向上とシミュレーション技術の発達により,太陽系天体近傍の物理現象を定量的に理解することが可能となってきた.

    本講義では,太陽系天体の物理現象の解明を将来さらに発展させていくに必要な,光・赤外や電波・レーダー計測技術,地球・惑星観測に不可欠な人工衛星・惑星探査機技術,ならびにコンピュータシミュレーション技術について,その基礎を学ぶ.

    Energy generated in the solar system, such as planetary atmospheres, small bodies, and surrounding plasmas is emitted as the electromagnetic waves in the visible, infrared, ultraviolet and radio ranges. Remote-sensing observations of these waves are useful to understand the physical processes in/around the solar system objects. Tohoku University has produced many results by the remote-sensing of physical processes in the earth, and planetary magnetospheres, such as the measurements of aurora, planetary trace gases, and atmospheric compositions from the ground and space.

    In addition, recent improvements in computer performance and the development of simulation technology bring us quantitative understanding of physical phenomena in the solar system.

    In this lecture, we will learn the basics of optical, infrared, ultra-violet, radio wave and radar measurement techniques and satellites and planetary probe engineering which are essential for the earth and planetary observations. We will also learn computer simulation techniques. These techniques are necessary for further elucidation of the physical phenomena in the solar system.

  •   電磁気学Ⅱ / Electromagnetics II  
      大兼 幹彦  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    本講義は、クラスによって、担当教員と講義方法が異なる。

    1.授業の目的と概要

    電磁気学は電気,磁気,及び電磁波に関する現象を説明する物理学の1つの分野であり,電気電子工学の重要な専門科目である.本講義では,電磁波の性質,電磁波の放射や伝搬など、電磁波の基本的な原理について講義する.

    2.成目標等

    Maxwell方程式から波動方程式を導き,電磁波の性質について理解した後,電磁波の放射や伝搬など種々の問題に対する理論的な解析法を理解し,様々な電磁現象を物理的に解釈できる素養を身につける.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    The lecture is performed in different classrooms for different courses.

    1. Course Aims

    Electromagnetism is a branch of physics which involves the study of the electric and magnetic field, and electromagnetic waves, is also one of the most important courses in the electrical and electronic engineering. This course covers the fundamental theory and analysis methods of electromagnetic phenomena, including the basic characteristics of electromagnetic waves, as well as the radiation, propagation and scattering problems of electromagnetic waves.

    2. Course Objectives

    Students should be able to understand the characteristics of electromagnetic waves by deriving and solving wave equation from Maxwell equations. They should also understand the analysis method to the problems of radiation, propagation and scattering of electromagnetic waves. They should have an ability to explain the electromagnetic phenomena from a physical point of view.

  •   電磁気学Ⅱ / Electromagnetics II  
      陳 強  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html

    1.授業の目的と概要

    電磁気学は電気,磁気,及び電磁波に関する現象を説明する物理学の1つの分野であり,電気電子工学の重要な専門科目である.本講義では,電磁波の性質,電磁波の放射や伝搬など、電磁波の基本について講義する.

    2.成目標等

    Maxwell方程式から波動方程式を導き,電磁波の性質について理解した後,電磁波の放射や伝搬など種々の問題に対する理論的な解析法を理解し,様々な電磁現象を物理的に解釈できる素養を身につける.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    Google Classroom code can be found on

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html

    1. Course Aims

    Electromagnetism is a branch of physics which involves the study of the electric and magnetic field, and electromagnetic waves, is also one of the most important courses in the electrical and electronic engineering. This course covers the fundamental theory and analysis methods of electromagnetic phenomena, including the basic characteristics of electromagnetic waves, as well as the radiation, propagation and scattering problems of electromagnetic waves.

    2. Course Objectives

    Students should be able to understand the characteristics of electromagnetic waves by deriving and solving wave equation from Maxwell equations. They should also understand the analysis method to the problems of radiation, propagation and scattering of electromagnetic waves. They should have an ability to explain the electromagnetic phenomena from a physical point of view.

  •   電磁気学Ⅱ / Electromagnetics II  
      廣岡 俊彦  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

      物質中の電磁波の伝搬についてMaxwell方程式を基本にして理解する。

    2.概要

      Maxwell方程式を基本として、電磁波の伝搬によってエネルギーと運動量が伝達されることを理解する。次に自由空間、誘電体、導体および磁性体中での電磁波の伝搬を説明し、電磁波の反射、屈折現象を理解する。また、導波管内の電磁波を例として、限られた空間内を伝搬する電磁波について説明する。項目の節目で演習を行い、基本事項の理解を深める。

    3.達成目標等

    ・電磁波に関する現象の基本的な物理概念を理解し、説明することができる。

    ・さまざまな物質中の電磁波伝搬の違いを理解し、応用することができる。

    授業は Google Classroomを使います。利用するときに「クラスコード」が必要です。後日お伝えします。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    Understood by the Maxwell equations in basic for the propagation of electromagnetic waves in the material.

    2. Summary

    The Maxwell equation as a basic energy and momentum will understand that it is transmitted by the propagation of electromagnetic waves. Then free space, dielectric, describes the propagation of electromagnetic waves in the conductor and the magnetic material in the reflection of electromagnetic waves, to understand the refraction phenomenon. In addition, as an example of the electromagnetic wave in the waveguide, a description will be given of an electromagnetic wave propagating in the limited space. Do the exercises at the turning point of the item, a better understanding of the basics.

    3. Goals, etc.

    - Electromagnetic waves to understand the basic physical concepts of phenomena related to, can be explained.

    · Understand the difference between the electromagnetic wave propagation of various substances in, it can be applied.

  •   大気放射学特論 / Atmospheric Radiation  
      岩渕 弘信  
      理  
      前期  
      前期 水曜日 2講時  

    太陽からの放射と地球から出る赤外放射は、地球におけるエネルギー伝播の主要部分を担っており、エネルギー収支を支配的に決めている。大気と地表面の変化は大気放射過程を通してエネルギー収支と気候を変化させる。この授業では、大気放射過程の本質である空気分子や雲粒,エアロゾル,物体表面と放射の相互作用について学び、気候の形成と気候系における雲やエアロゾルの役割を理解することを目的とする。また、大気放射伝達の理論を理解し、宇宙や地上からの大気リモートセンシングの手法を学ぶ。

    Solar radiation and thermal infrared radiation are main players to transport energy in the atmosphere-ocean-land system on the earth. Changes in the atmosphere and surface cause changes in the energy budget and climate through the atmospheric radiation process. In this class, we learn the principles of atmospheric radiation, including the definitions of physics of gaseous absorption, scattering by air molecules and small particles, interaction between radiation and materials, and radiative transfer. A goal is to understand the roles of cloud and aerosol in the climate system, and another goal is to understand the theory of atmospheric radiative transfer and the principle and methods for remote sensing of the atmosphere from space or surface.

  •   宇宙空間プラズマ物理学特論Ⅱ / Advanced Space Plasma Physics II  
      三澤 浩昭, 市來 雅啓, 熊本 篤志, 理学部非常勤講師  
      理  
      後期  
      後期 火曜日 4講時  

    宇宙空間のプラズマや粒子、電磁場に関わる物理とその計測法の理解は、太陽・惑星・衛星の多様な電磁環境や変動を理解し、正しくその特徴を把握するために重要である。この授業では、宇宙空間のプラズマの波動や粒子の特徴とその直接計測や、電波のリモートセンシングによる電磁環境計測の基礎と応用を論じ、宇宙空間のプラズマ現象の理解に必要な能力を得ることを目的としている。加えて、電磁波や電磁場計測に基づく惑星表層~内部の探査・解析手法についても紹介する。

    Due to significant expansion of the geophysics in the last century, the space plasma physics became to be one of the major scientific interest of our planet. This lecture on the space plasma physics introduces basic physical processes of the space plasma surrounding the Earth, planets, satellites and also the sun, and various measurement and evaluation methods for plasma waves, particles and electro-magnetic fields by using spacecraft and remote sensing from the ground. In addition, this lecture also introduces some techniques for exploration inside planets and satellites using electromagnetic waves and fields.

  •   星間物理学 / Physics of the Insterstellar Medium  
      富田 賢吾  
      理  
      前期  
      前期 月曜日 2講時  

    宇宙空間は目に見える星以外にも多様な状態にある原子ガス、分子ガス、プラズマやダスト(広義には宇宙線・磁場・輻射も含む)などに満たされており、これらを総称して星間物質と呼ぶ。宇宙の進化を理解するには、星間物質から天体が形成され、天体から星間物質へと還っていく物質の循環を理解しなければならない。この授業では多様な星間物質の性質や構造、そして銀河や星形成と星間物質の関係を、そこで働く物理過程に基づいて理解することを目的とする。

    The interstellar field is not empty, but filled with atomic, molecular gases, plasma and dusts (also cosmic rays, magnetic fields and radiation in a broad sense) and these are known as the interstellar medium (ISM) as a whole. In order to understand the evolution of the Universe, it is of crucial importance to understand circulation of materials between the ISM and astronomical objects. In this course, students will learn the nature and structure of the ISM and its link to galaxies and star formation processes based on physical processes.

  •   波動伝送理論 / Wave Transmission Theory  
      陳 強, 吉澤 晋  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページにて確認すること。

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

     波動の伝搬並びに放射のなどの基礎理論を学習することにより,音波,電波及び光波の伝送の原理を理解することを目標とする.また,波動伝送の応用について最新の技術を理解する.

     本講義では,最も単純な疎密波の線形伝播から始まり,弾性波の線形伝播・非線形伝播,平面電磁波の伝搬,電磁波の放射の基礎を学ぶ.また,実際に用いられている電波・光波の伝送路の動作原理と基本特性,並びに超音波と光波の相互作用とその応用について講義する.

    Google Classroom code is available on

    https://www.eng.tohoku.ac.jp/english/academics/master.html

     Students will learn about the basic knowledge of propagation and radiation of acoustic wave and electromagnetic wave. They will also learn about the latest technology and publications of the wave engineering.

       This course starts from the linear propagation of compressional wave, linear and non-linear propagation of elastic wave, plane wave propagation, and radiation of electromagnetic wave. It also covers the fundamental theory and applications of waveguide for microwave and optical wave, as well as the interaction between ultrasonic wave and optical wave.

  •   物理光学 / Optics  
      岩井 伸一郎  
      理  
      後期  
      後期 木曜日 3講時  

    光の電磁波としての性質(振幅、周波数、位相、偏光)とその記述法と、光が物質に入射した際の干渉、回折、反射、屈折の原理を理解する。また、“色”の起源である「光と物質(絶縁体、金属、磁性体)の相互作用」の基礎を理解する。その応用として発光ダイオード、レーザー、光周波数コムなどの先端光デバイスについても学ぶ。

    Fundamental properties of light (amplitude, frequency, initial phase, polarization) as a electromagnetic wave and the principle of optics (reflection, refraction, interference, diffraction) will be introduced. In the latter part, light-matter (metal, insulator, magnet) interactions will be learned as an origin of color of materials. Moreover, optical devices (Light Emitting Diod, Laser, Optical frequency Comb) wlll be also discussed.

もっと見る…