内容に類似性のあるシラバス

2787 件ヒット (0.026秒):

  •   応用腐食防食学 / Advanced Corrosion Engineering  
      武藤 泉  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    この科目ではGoogle Classroomを使用して、講義資料と講義情報を発信します。

    クラスコード:2bggnz2

    1.目的

    腐食の現象や形態は多種多様であるが、その機構を理解したうえで適切な防食対策を施すことで、損傷を防止することができる。これは大きな経済効果をもたらすのみならず環境負荷の低減にもつながる。ここでは腐食防食と耐食材料に関する知識を修得することを目的とする。

    2.概要

    主な内容は、腐食の電気化学的機構、不働態、耐食合金、各種腐食現象とその原因、防食方法等である。

    3.達成目標等

    金属材料の水溶液腐食の原理を平衡論と速度論の観点から、その特徴を説明することができる。孔食、すき間腐食、粒界腐食、応力腐食割れ、異種金属接触腐食などの各種腐食現象の原因と防止策を説明することができる。さらに、腐食計測および解析技術の原理、特徴を説明することができる。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    This course uses Google Classroom to provide lecture materials and lecture information.

    Google Classroom: 2bggnz2

    Please note that the contents of this syllabus are subject to change depending on the situation of the COVID-19 infection.

    The purpose of this course is to understand the theory of metallic corrosion. This course is arranged into two parts. The first part deals with the fundamentals of electrochemical aspects of corrosion phenomena and corrosion kinetics. In the second part, corrosion-resistant alloys and corrosion monitoring are described.

  •   相変態論 / Theory of Phase Transformations  
      貝沼 亮介, 市坪 哲, 大森 俊洋, 須藤 祐司  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    目的

    相平衡および拡散について理解を深めると同時に、相変態の熱力学的背景を学ぶ。また、実例を通して組織制御や材料設計への利用法について習得する。

    概要と目標

    前半は、主に相の安定性や相平衡について学習し、後半では、界面、拡散、核生成、マルテンサイト変態等に関連する各種相変態の熱力学的背景と原理について学ぶ。

    -自由エネルギー、エントロピー、エンタルピー等を統計熱力学的に理解する。

    -固溶体や化合物の自由エネルギー近似と化学ポテンシャルや相平衡の原理を理解する。

    -界面エネルギーの起源や偏析現象、粒成長現象を理解する。

    -拡散におけるフィックの法則、現象論的方程式、熱力学因子について理解する。

    -凝固や析出について均一核生成や負均一核生成について理解する。

    -マルテンサイト変態の組織的特徴と変態ヒステリシスや変態温度幅の起源を理解する。

    達成方法

    本授業は講義と演習を中心に行う。

    この科目ではClassroomを利用して講義資料と講義情報を発信します。

    Classroomにアクセスし、クラスコードを入力してください。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Objectives are to promote understanding of the phase equilibria and transformations on basis of thermodynamics and kinetics and to understand some basic concepts on the microstructural control and materials design.

    In the former part, the course provides students with basic knowledge on phase stability and phase equilibrium in materials. In the latter part, the course provides explanations of the thermodynamic origins and principles on phase transformations related to interface, diffusion, nucleation, martensite etc.. The course will be performed with following targets:

    -to understand free energy, entropy and enthalpy in view point of statistical thermodynamics.

    -to understand principle of free energy approximation, chemical potential and phase equilibrium in solid solution and compound.

    -to understand origin of interfacial energy, segregation and grain growth phenomena.

    -to understand Fick's laws, phenomenological diffusion equation and thermodynamic factor etc..

    -to understand the classical theory on homogeneous and inhomogeneous nucleation phenomena.

    -to understand microstructural features of martensitic transformation and origin of transformation hysteresis and width.

    This is a lecture-centered course including exercises.

    This class uses Classroom to provide lecture information.

    Please access Classroom and input the class-code.

  •   基礎物理化学 / Basic Physical Chemistry  
      壹岐 伸彦, 渡邉 賢  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1. 目的

    化学の諸原理を確立し敷衍する物理化学の基礎を学ぶための第一歩として,本講義では,物質の状態変化および化学変化についての熱力学的及び速度論的な理解の仕方を学習する。そこで基礎となる概念と,定量的な手法の習得を目的とする。

    2.概要

    状態変化の扱い方を学ぶとともに,熱力学諸法則,熱力学的状態量(エンタルピー,エントロピー,自由エネルギー,化学ポテンシャル等)の定義とそれらの定量的表現法,さらには,具体的な応用についても学習する。次に,熱力学的知見の重要な展開として,化学平衡と溶液の諸性質を議論し,最後に,速度論の基礎を学ぶ。

    3.達成目標等

    この授業では,主に以下のような知識・スキルの修得を目標とする。

    ・ 物質変化・状態変化に対しての熱力学的理解とその定量的表現。 

    ・ 実際の物質変化・状態変化の解析法とその応用。

    ・反応速度に関する基礎的理解と定式化及び決定法。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    Physical chemistry is a base of chemical principles to describe wide variety of chemical phenomena. To learn the basics of physical chemistry, understanding in the physical states of matters and chemical reaction in terms of thermodynamics and chemical kinetics is of particular importance. This course aims to deepen understanding in those concepts and quantitative description.

    2. Summary

    First, this course provides students with basic knowledge such as phase transition, principles of thermodynamics, definition and usage of state functions (enthalpy, entropy, free energy, and chemical potential), and their application to real systems. Second, thermodynamics of properties of solutions and chemical equilibrium. Third, chemical kinetics.

    3. Goal

    Students will acquire knowledge and develop the skills on the following matters:

    1) Understanding and description of phase transition and chemical reaction by thermodynamics.

    2) Quantitative description and analysis of such changes in real systems.

    3) Description of chemical kinetics by rate law and kinetic analysis.

  •   応用構造材料学 / Advanced Structural Materials  
      古原 忠, 宮本 吾郎, 山中 謙太  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    我々の社会基盤構築において重要な種々の構造用金属材料について概説するとともに,材料組織制御の基礎および材料特性(主として力学特性)との関係について習得する.

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Various metallic materials which are important for infrastructures in our society are briefly introduced. Fundamentals of microstructure controls and their relations to materials properties (mainly, mechanical ones) will be learned.

  •   界面電気化学 / Interfacial Electrochemistry  
      珠玖 仁, 伊野 浩介  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    界面が関与する固体の物性と,固体/液体界面での電荷移動を伴う化学反応(電気化学反応)あるいは、電極界面現象についての理解を深め、基礎的知識を修得することを目標とする.

    2.概要

    電気化学反応とは、電極(固体)側にある電子の溶液側のイオン・分子への電子移動を含む反応であり、反応の起こる場所である電極・溶液界面の電気二重層の構造、速度論について講義する。

    3.達成目標等

    電解質溶液の性質、電気化学平衡、界面電気二重層、電極反応速度について説明できる。

    こうした基礎的知識を基に、電極表面科学、燃料電池、リチウム電池等の応用分野への展開原理が理解できる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    This class aims to learn about basics of electrochemical reaction and behaviors of electrons and ions at solid-liquid interface. Students will learn about property of electrolyte, electric double layer, redox potential, and kinetics of electrode. The basic knowledges will help us to understand practical electrocatalysis, corrosion, photoelectrochemistry, bioelectrochemistry, principle of fuel cell and lithium ion battery.

  •   材料電気化学 / Materials Electrochemistry  
      武藤 泉, 朱 鴻民, 竹田 修  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    この科目ではGoogle Classroomを使用して、講義資料と講義情報を発信します。

    クラスコード:6o3f2k5

    1.目的

    電極/電解質系においては、電極界面を通しての電子移動過程を伴う化学反応が生ずる。このような反応は電極反応と呼ばれ、エネルギー変換、情報変換および物質変換において重要な役割を果たしている。ここでは電極反応の基礎概念と応用技術について学ぶことを目的とする。主な内容は、金属および半導体電極などに関する電気化学の平衡論と速度論、電気化学反応を利用した物質合成の基礎と応用である。

    2.概要

    電子移動に着目した金属電極の電気化学、電化学計測法、半導体電気化学、および工業電解の基礎と応用について講義する。

    3.達成目標等

    水溶液と金属電極の平衡論と速度論を電子移動に着目して理解し、その特徴を説明することができる。電化学計測技術の原理、特徴を説明することができる。半導体電極、光電気化学反応の原理を理解できる。工業電解(ソーダ電解、亜鉛電解、アルミニウム電解)の特徴を理解し、工業電解が成立するための要件を説明できる。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    This course uses Google Classroom to provide lecture materials and lecture information.

    Google Classroom: 6o3f2k5

    The purpose of this course is to understand the theory and practical application of electrochemistry in materials science. This course is arranged into three parts. The first part deals with fundamentals of electrochemical equilibrium and reaction kinetics on metal electrodes in terms of electron transfer. In the second part, method of electrochemical measurements is described. Third part covers characteristics of industrial electrolysis (chlor-alkali process, electrowinning of zinc, electrowinning of aluminum) and key points for establishing industrial electrolysis.

  •   反応速度論 / Kinetics in Reactions  
      佐藤 義倫  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

     物質の変換を伴う諸現象の進展する速度を支配する因子について理解を促し,反応速度の予測・応用に繋がる基礎の習得を目的とする。

    2.概要 

     気体と液体における分子の運動の考察を通して,化学変化の速度を論じる基礎の準備をする。その後,反応速度の厳密な定義を確立し,反応系の変化速度とミクロレベルの過程との関係、および反応速度の予測について学ぶ。

    3.達成目標 

     反応系の変化速度が素過程や分子衝突に基づいたミクロレベルの過程からどのように表現できるか,および予測可能になるかを考察できる能力の取得を目指す。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    It is one of the roles of engineering to develop various processes responsible for chemical change into a useful technology for human race's welfare. The kinetics in reactions is very important in engineering developments. In this lecture, we prepare the ground for a discussion of rates of chemical reactions by considering the motion of molecules in gases and in liquids. Then we establish the precise meaning of reaction rate, and see how the overall rate, and the complex behavior of some reactions, can be expressed in terms of elementary steps and the atomic events that take place when molecules meet.

  •   電気化学 / Electron Transfer Chemistry of Materials  
      武藤 泉  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    この科目ではGoogle Classroomを使用して、講義資料と講義情報を発信します。

    クラスコード: hswkzyo

    1.目的

    固体電極/電解質系においては,電極界面を通しての電子移動過程を伴う化学反応が生ずる。このような反応は電極反応と呼ばれ,エネルギー変換,情報変換および物質変換において重要な役割を果たしている。ここでは電極反応の基礎概念を学ぶことを目的とする。

    2.概要

    電気化学ポテンシャルの概念,起電力の発生機構,電極反応の熱力学,電極反応の速度論等の基礎知識について講義を行う。

    3.達成目標等

    ・本学科の学習・教育目標のA,B,C,Dに関する能力を含めて修得する。

    ・電極電位の概念を理解し,電池の起電力を説明する事ができる。

    ・電極反応速度の概念を理解し,反応速度を決める要因を説明する事ができる。

    ・化学電池や金属腐食の原理を理解し,説明する事ができる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    This course uses Google Classroom to provide lecture materials and lecture information.

    Google Classroom: hswkzyo

    Objective:

    The purpose of this course is to acquaint students with fundamental knowledge about electrochemistry. This course deals with four aspects of electrochemical systems:

    1. Ionics describing ion-ion interactions in solvents and conductance of electrolytes;

    2. Electrode potentials describing Nernst equations and their applications;

    3. Theories of electrode/electrolyte interfaces;

    4. Kinetics of electrochemical reactions describing Butler-Volmer equations.

    Outcomes:

    Describe ion-ion interactions in solvents and conductance of electrolytes

    Explain the concepts of electrochemical potential and current density, and to apply Nernst equation to electrochemical systems.

    Describe the electrochemical double layer based on common models

    Explain relationships between current density and electrode potential, and to extract kinetic parameters from electrochemical data.

    This course includes our program outcomes of A, B, C, D.

  •   核エネルギーシステム材料学 / Materials for Nuclear Energy Systems  
      笠田 竜太, 近藤 創介  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    原子炉や核融合炉等の核エネルギーシステムと、核エネルギーシステムに用いられる様々な材料の関係について修得し、核エネルギーシステムの成立性における材料の役割について理解することを目的とする。

    このために前提となるより広義のエネルギーシステムの安定性についての考え方を身につける(第2回)。エネルギーシステムの安定性の調査や分析に適用可能なシステムダイナミクスの手法を学ぶ(第3,4回)。

    核エネルギーシステムにおいて特徴づけられる原子核・放射線・核エネルギーの基礎について、特に物質との相互作用を中心に学ぶ(第5、6回)。

    。核エネルギーシステムに用いられる材料に特有の現象である照射損傷と、それによって生じる照射効果について学ぶ(第7、8回)。核エネルギーシステムに用いられる材料の耐環境性や事故時の挙動などについて基礎を学ぶとともに、近年開発が進められている事故耐性燃料等の状況について知る(第9、10回)。照射効果が生じる材料を用いる核エネルギーシステムの構造健全性の考え方について、原子炉圧力容器鋼における具体例を中心に全体像を把握できるようにする(第11、12回)。

    核エネルギーシステム・材料の寿命の考え方について工学的な観点に加えて社会的な観点を学ぶ(第13回)。また、核エネルギーシステム・材料と社会の関係について、自分なりの視点を認識し、演習を通して他者と議論できるようにする(第14回)。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    The purpose of this study is to learn the relationship between nuclear energy systems, such as fission reactors and fusion reactors, and various materials used in the nuclear energy systems, and to understand the role of materials in the feasibility of nuclear energy systems.

    For this purpose, students will learn the concept of energy system stability in a broader sense in the chapter 2. Learn system dynamics methods applicable to energy system stability research and analysis in the chapters 3 and 4.

    Fundamentals of nuclei, radiation, and nuclear energy characterized in nuclear energy systems especially for their interaction with matter is introduced in chapter 5 and 6.

     Learn about irradiation damage, which is a phenomenon specific to materials used in nuclear energy systems, and the irradiation effects in chapters 7 and 8. In addition to learning the basics of environmental resistance and accident behavior of materials used in nuclear energy systems, learn about the status of accident-toalelant fuels (ATFs), etc., which have been developed in recent years in chapters 9 and 10. An overview of the concept of structural integrity of nuclear energy systems using materials that suffer from irradiation effects, with a focus on specific examples of reactor pressure vessel steel, will be provided in the chapters 11 and 12. 

    Based on the engineering knowledge obtained so far, learn the concept of life of nuclear energy systems and materials from an engineering perspective as well as a social perspective in the chpter 13. In addition, students will be able to recognize their own perspectives on the relationship between nuclear energy systems / materials and society, and discuss it with other students in the chapter 14.

  •   先進鉄鋼工学 / Advanced Steel Engineering  
      三木 貴博  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    この科目ではGoogle Classroomを使用して、講義資料と講義情報を発信します。

    Google Classroomにアクセスし、クラスコードを入力してください。

    授業の形式: ハイブリッド(ストリーミング配信しつつ教室での受講も認める)、オンデマンド(非同時・ビデオ視聴)、もしくはリアルタイムでのオンラインのいずれかとする。

    1.目的

    自動車、建設、家電・電機、重工・エネルギー産業等の鉄鋼材料を扱う各種産業分野において必要不可欠な鉄鋼の生産技術と製品特性に関する基礎知識を習得することを目的とする。

    2.概要

    鉄鋼材料の製造プロセスに始まり、代表的な応用製品の組織設計上の特徴や表面特性、研究開発を支える最先端の評価技術、そして鉄鋼業と社会との関わりに至るまでを総合的に概説する。

    3.達成目標等

    鉄鋼の生産技術と製品特性に関する基礎的な概念を理解し、その特徴を説明することができる。さらに、鉄鋼業やその製品と社会とのかかわりを工学的な観点から説明できる。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Google Classroom: y2bvq3i

    This course is held ONLINE (Live Stream, Video-On-demand or Hybrid).

    "Hybrid" means that the students can take the lectures in the class room or online.

    Professionals working in steel industry provide lectures, in an "omnibus" style, on the steel making processes and the applications of steels products.

もっと見る…