内容に類似性のあるシラバス

530 件ヒット (0.049秒):

  •   数値材料プロセス学 / Numerical Methods for Materials Processing  
      埜上 洋, 夏井 俊悟  
      工  
       
       

    1.目的

    材料プロセス内で発生する物理現象を支配する基礎方程式の基礎とそれらを数値解析する手法について学ぶ。また、それらの具体的な材料プロセスへの応用事例について学ぶ。

    2.概要

    材料プロセス内で発生する物理現象を支配する基礎方程式は、各種保存則と構成方程式から得ることができる。最終的にこれらの基礎式は、積分形と微分形にまとめることができ、それらは数値的に解くことができる。代表的な数値解析方法について学ぶ。また、これらの手法は様々な材料プロセス問題の解明に有効であることを多くの事例を通じて学ぶ。

    この科目の実施形態は、講義室の講義を想定していますが、状況によりオンライン配信を利用する場合があります。講義情報と講義資料は Google Classroom を通じて発信します。Google Classroomのクラスコードを工学研究科Webページにて確認し登録すること。

    大学院シラバス・時間割・履修登録

    (https://www.eng.tohoku.ac.jp/edu/syllabus-g.html)

    1. Purpose

    Learn basic equations of physics that appear in the material processing phenomena and numerical analysis methods for solving the equations. And more, learn about the application of the methods to the actual materials processing problems.

    2. Outline

    Basic equations of physics that appear in the material processing phenomena can be obtained from dominant conservation laws and constitutive equations. Finally, basic equations can be reduced to differential or integral forms that can be solved numerically. Learn about typical numerical methods that can be available to solve the basic equations. And more, learn about the versatility of these numerical methods through the applications to actual materials processing.

    This lecture will be given in an actual classroom. The lecture style, however, will be changed if necessary. Information and documents about this lecture will be distributed through "Google Classroom". Check the class code for Google Classroom at School of Engineering Website and register for this class.

    Timetable & Course Description

    (https://www.eng.tohoku.ac.jp/english/academics/master.html)

  •   移動現象論 / Transport Phenomena  
      大森 俊洋  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    本授業は対面で火曜日2講時に行う。授業情報の提供は Google Classroom も使用する。

    1.目的

    材料製造プロセスにおいて重要な運動量、熱および物質の移動(総称:移動現象)に関する基礎知識修得を目的とする。

    2.概要

    移動現象の共通法則、次元解析と無次元相関式、収支式(微分方程式)の立て方、収支式の解き方等について、簡単な材料製造プロセスの例を用いて述べる。

    3.達成目標等

    この講義では、主に以下のような能力を修得することを目標とする。

    ・本系の学習・教育目標のA, B, Dに関する能力を修得する。

      記号A-Mについては、マテリアル・開発系の教育目標を参照のこと。

      https://www.material.tohoku.ac.jp/department/purpose.html

    ・ 材料製造プロセスにおける移動現象の役割を理解する。

    ・ 移動現象間の類似性を分子運動の見地から理解する。

    ・ 異相間移動速度の定式と次元解析による無次元相関式の導出法を理解する。

    ・ 収支式の立て方と微分方程式の基礎的解法を理解する。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    In this course, lectures will given in a lecture room on Tuesday from 10:30 to 12:00. The class information will be provided via Google Classroom. To access the Classroom, please check the website (https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1. Goals

    The main goal of this course is to let students acquire basic knowledge about transport phenomena in materials processing. Transport phenomena include fluid flow, heat and mass transfer.

    2.Outline

    General laws of transport phenomena, dimensional analysis and dimensionless correlation equations, derivation of balance differential equations and methods of their solution will be described using material manufacturing processes as examples.

    3. Achievement target, etc.

     ・The objective of this class is to acquire the following skills and abilities.

     ・The role of transport phenomena in the material processing.

    ・ The similarity between transport phenomena from the viewpoint of molecular motion.

    ・ The main relationships for the transfer rate between different phases and derivation of the dimensionless

       correlation equations using the dimension analysis.

    ・ Formulation of the balance equations and the basic solutions of differential equations.

  •   伝熱・流体の力学 / Heat Transfer and Mechanics of Fluid  
      及川 勝成  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    もの作りの基本は材料に熱や力を加えて形や特性を制御することであり,材料内部の温度場や加えられた力と変形・流動の関係を知ることが重要である.本講では,工学全般に現れる伝熱現象およびその数学的取り扱いについて学ぶ.また,流体の運動について,工学的に有用な数学モデルを紹介し,対流問題などに対する応用について学ぶ.

    2.概要

    工学問題に現れる伝熱現象をマクロな立場からモデル化する手法ならびに基礎方程式の導出方法を学び,伝熱現象を定性的ならびに定量的に評価するための厳密解ならびに近似解法について,具体的な工学問題を例に解説する.また,対流熱伝達との関連を中心に,流体力学の基礎についても講義する.

    3.達成目標等  (この授業を通して以下の能力を修得することを目標とする)

    ・ 本学科の学習・教育目標のA、B、C、Kに関する能力を含めて修得する.

    ・ 伝熱現象ならびにマクロな立場からの伝熱現象のモデル化手法を理解する.

    ・ 流体力学の基礎について理解する.

    ・ 伝熱・流れの問題に対する厳密解および近似解法について理解し応用できる能力を養う.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    The basis of manufacturing is to control the shape and characteristics by applying heat and force to the row material, and it is important to know the temperature field inside the material and the relationship between the applied force and deformation / flow.

    In this course, we focus on heat transfer phenomena appearing in engineering and their mathematical process. In addition, we introduce some mathematical models of fluid motion such as convection problems.

    2. Outiline

    Learn how to model heat transfer phenomena appearing in engineering problems from a macroscopic aspects and how to derive basic equations. Exact solutions and approximate solutions for qualitatively and quantitatively evaluating heat transfer phenomena in engineering are expound. In addition, learn the basics of fluid mechanics, focusing on convective heat transfer.

    3. Outcomes

    Understand heat transfer phenomena and modeling methods of heat transfer phenomena from a macroscopic aspect.

    Understand the basics of fluid mechanics.

    Develop the ability to understand and apply exact and approximate solutions to heat transfer and flow problems.

    This course includes the our program outcomes of A, B, C, K

  •   移動現象論 / Transport Phenomena  
      渡邉 則昭, 上髙原 理暢  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    この科目ではGoogle Classroomを使用して講義資料と講義情報を発信することがあります。

    Google Classroomのクラスにアクセスできるようにしておいてください。

    1. 目的

    運動量,熱および物質の移動(総称:移動現象)に関する基礎知識修得を目的とする。

    2. 概要

    移動現象の共通法則,次元解析と無次元相関式,収支式(微分方程式)の立て方および収支式の解き方などについて例を用いて述べる。

    3. 達成目標等

    ・移動現象の役割を理解する。

    ・移動現象間の類似性を理解する。

    ・異相間移動速度の式と次元解析による無次元相関式の導出法を理解する。

    ・収支式の立て方と微分方程式の基礎的解法を理解する。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    In this subject, lecture materials and lecture information may be sent using Google Classroom.

    Prepare accessing Google Classroom.

    1. Object

    Students will understand fundamentals of the momentum, heat and mass transport phenomena.

    2. Summary of Class

    This course describes the common laws among transport phenomena, dimension analysis and relationships among dimensionless numbers, the ways to derive and solve equations of balance (differential equations) and so on by using examples.

    3. Goal of Study

    · Understand the important roles of transport phenomena.

    · Understand the similarity among transport phenomena.

    · Understand the ways to derive the equations for the rates of transport phenomena, and relationships among dimensionless numbers through the dimension analysis.

    · Understand the ways to derive and solve the differential equations of balance.

  •   数理流体力学 / Mathematical Fluid Dynamics  
      江原 真司, 橋爪 秀利  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    本講義ではGoogle Classroomを使用して講義情報を発信します(クラスコード: nwihw6n)。

    1.目的

    先進核分裂炉、核融合炉、粒子加速器などの量子エネルギーシステムにおける熱設計の基礎となる伝熱学・流体力学およびそれらの応用としての数値解析手法を学ぶことを目的とする。

    2.概要

    伝熱学については、伝熱の基本形態である伝導・対流について、物理現象の定式化と解法を交えて学ぶ。流体力学については、理想流体の複素解析、粘性流体の運動・境界層について学ぶ。また、両者に共通する次元解析および現象を支配する無次元数について学ぶ。また、テンソル解析の基礎を理解し、粘性による応力とひずみ速度の関係を学び、ナビアストークスの式を導出する。

    3.到達目標

    伝熱学の基礎を理解すること、および支配方程式の導出過程・取扱いを習熟すること

    流体力学の基礎方程式の数理的な取扱いを習熟し、粘性流体の流動現象の特徴とその数学的な記述を理解すること

    次元解析による無次元相関式の導出法を理解すること

    テンソル解析の基礎を理解し、ナビアストークスの方程式の各項の意味を理解すること

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    In this class, lecture information will be sent via Google Classroom (class code: nwihw6n).

    1. Objectives

    The purpose of this class is to provide students with an understanding of heat transfer science and fluid dynamics, which are the basis of the design of thermal engineering system such as advanced nuclear fission reactors, nuclear fusion reactors and particle accelerators, and of numerical analysis method as their applications.

    2. Outline

    In this class, students will learn how to formulate and solve the physical phenomena of heat conduction, convection, which are the basic mechanism of heat transfer, as regards heat transfer science. Regarding fluid mechanics, students will learn complex analysis of ideal fluid and motion of viscous fluid including boundary layer, as well as dimensionless numbers that govern the phenomena. In addition, students will understand the basics of tensor analysis, learn the relationship between viscous stress and strain rate, and derive the Navier-Stokes equation.

    3. Goal

    To understand the fundamentals of heat transfer and to acquire the academic skills to derive and handle the governing equations.

    To understand mathematical aspects of basic equations in fluid mechanics, and characteristic features and mathematical expressions of viscous fluid motions.

    To understand the way to derive relationships among dimensionless numbers through the dimension analysis

    To understand the basics of tensor analysis and understand the meaning of each term in the Navier-Stokes equation.

  •   建築数理基礎論Ⅱ / Theoretical Basis of Mathematics and Dynamics in Building Engineering II  
      後藤 伴延, 石田 泰之  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    目的:都市・建築分野における熱・空気環境のシミュレーションに用いられる基本的な手法を習得する。

    概要:応答係数法による動的熱負荷計算,熱回路網計算,有限体積法による伝熱解析の3つについて講義する。有限体積法は流体解析の解法としても利用可能である。

    Microsoft TeamsかGoogle Meetを使用。接続先URLはGoogle Classroomで通知。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Objective: To learn some fundamental techniques on heat and mass transfer simulations in architectural field

    Outline: This course comprises lectures on dynamic heat load simulation, thermal network simulation, and heat transfer analysis by finite volume method. The finite volume method can also be applied for fluid analysis.

    Microsoft Teams or Google Meet will be used. The URL will be notified by Google Classroom.

  •   数値流体力学 / Computational Fluid Dynamics  
      山本 悟  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    本講義は対面で実施する予定.

    詳細は、Google Classroomの

    クラスコード:25qh66o

    に記載.

    1. 目的

    流体問題をコンピュータで数値シミュレーションすることを目的に、偏微分方程式の数値計算手法である差分解法について、その基礎と応用を講義する。

    2. 概要

    まず、偏微分方程式の基礎ならびに解析的解法について解説する。次いで、偏微分方程式を数値的に解く代表的手法としての差分解法の基礎を説明し、その応用として非圧縮性ナビエ・ストークス方程式の差分解法についても触れる。

    3.達成目標等

    偏微分方程式の各型に応じた差分解法を習得し、実際に簡単な例題が解けるようになること。そして、非圧縮性ナビエ・ストークス方程式が、その応用で解くことができる点を理解する。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    The objective of this lecture is to understand numerical methods for solving partial differential equations (PDE) and incompressible Navier-Stokes equations (INSE).

    This lecture first introduces the basis of PDE. Second, as typical numerical methods, the basis of finite-difference method (FDM),FDM for PDE, and FDM for INSE are covered.

    Class Code: 25qh66o

  •   空気力学 / Compressible Fluid Dynamics  
      久谷 雄一  
      工  
       
       

    Google Classroomのクラスコードはoarjopvです。

    1.目的

    様々な圧縮性流れ現象の理解に不可欠な基礎学力の習得を目的とする.

    2.概要

    理想気体を仮定して,等エントロピー流れ,垂直衝撃波流れ,斜め衝撃波流れ,角をまわる超音速流れやノズル流れなど,空気力学の基礎を講義する.

    3.達成目標等

    等エントロピー関係式,衝撃波関係式など基本的な関係式を習熟する.

    圧縮性流れ現象の特徴を理解する.

    1. Aim

    The aim is to acquire basic academic skills essential for understanding various compressible flow phenomena.

    2. Overview

    Assuming ideal gas, lectures on aerodynamics such as isentropic flow, normal shock flow, oblique shock flow, supersonic flow around a corner and nozzle flow will be given.

    3. Achievement target

    Master basic relational expressions such as isentropic relations and shock wave relations.

    Understand the characteristics of compressible flow phenomena.

  •   数値流体力学 / Computational Fluid Dynamics  
      河合 宗司, 久谷 雄一  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    1.目的

    圧縮性流れの数値計算手法(CFD)の基礎学力の習得を目的とする.

    2.概要

    有限差分法の精度とエラー,中心スキームと風上スキームの意味,有限体積法(保存則と数値流束),近年の高次精度スキームなどの基礎を講義する.またこれらの数値計算手法のプログラミング法についても講義を行う.

    3.達成目標等

    圧縮性流れの数値計算手法(CFD)の基礎を習熟する.

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    1. Purpose

    The purpose of this lecture is to understand the basics of modern computational fluid dynamics (CFD) methods for compressible flow simulations, and also to acquire programming skills to program lectured numerical methods.

    2. Overview

    Accuracy and errors of finite difference methods, the meaning of central and upwind schemes, finite volume methods (conservation law and numerical flux), and recent high-order accurate numerical methods are given in the lectures. Also, we will provide lectures on programming methods based on Fortran language and reports on actual programming of lectured numerical methods.

    3. Achievement target

    Master basic relational expressions such as isentropic relations and shock wave relations.

  •   都市・建築環境解析学 / Numerical Analysis of Indoor and Outdoor Environment  
      後藤 伴延, 石田 泰之  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    数値流体力学(Computational Fluid Dynamics)に基づく乱流数値シミュレーションと放射解析を中心とする室内気候、市街地気候、都市気候の解析手法について解説する。さらに数値解析の特徴を活かして、解析結果から室内空間や都市空間における熱汚染や空気汚染の発生メカニズムを構造的に明らかにするために近年開発された評価指標や分析方法を説明し、これに基づく合理的な環境デザインの事例を紹介する。

    Microsoft TeamsかGoogle Meetを使用。接続先URLはGoogle Classroomで通知。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Turbulent diffusion strongly influences the wind environment in urban area, wind loading on structure, thermal environment and air quality in and around buildings. An introduction is given to CFD simulations of airflow related phenomena in and around buildings using various turbulence models, namely standard and revised k-e models, ASM, DSM and LES. Canopy flow models for reproducing aerodynamic effects of flow obstacles whose sizes are smaller than computational grid cell is also introduced. Emphasizes are placed on the performance of these models and the essentials of modeling techniques when they are applied to complex flowfields related to built environment. Furthermore, the way how the turbulent flow simulations can be utilized for environmental design is also provided.

    ※This Class will use "Microsoft Teams" or "Google Meet".

      The URL is notified by "Google Classroom".

もっと見る…