内容に類似性のあるシラバス

1052 件ヒット (0.018秒):

  •   システム制御工学Ⅱ / System Control Engineering II  
      吉田 和哉, 田村 雄介  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    本講義では、「システム制御工学I」の内容を発展させた講義を行う。高度化・複雑化する機械システムの運動制御系設計を目的とし、制御システムの解析ならびに制御系設計法について講義を行う。本講義では、線形システムを対象として、状態空間における状態フィードバック制御と出力フィードバック制御に代表される制御系設計、状態オブザーバとカルマンフィルタ,および制御応答性解析の基本について講義する。講義は英語で行う。MATLABあるいはそれに代わるソフトウェアを利用した演習を含むものとする。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    In this lecture, we will give a lecture that develops the contents of "System Control Engineering I". Lectures will be given on control system analysis and control system design methods for the purpose of designing motion control systems for increasingly sophisticated and complex mechanical systems. In this lecture, we will give a lecture on the basics of control system design represented by state feedback control and output feedback control in the state space, state observer and Kalman filter, and control responsiveness analysis for linear systems. Lectures will be given in English. It shall include exercises using MATLAB or alternative software.

  •   システム制御工学B / Control Systems Engineering B  
      杉田 典大  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    古典制御よりも高度なシステム制御理論についてその基礎を修得することを目的とする。

    以下について学び、これらを用いた制御システムの解析や設計を行えるようにする。

    (1)状態空間表現と伝達関数

    (2)可制御性・可観測性、状態フィードバック、最適制御

    (3)Z変換とパルス伝達関数

    (4)記述関数と位相面解析

    (5)ランダム信号の相関関数とパワースペクトル

    講義では数回のレポートが課される。資料やレポートはGoogle classroomにて提供する。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    The objective of this subject is to master fundamentals of system control theories that are more advanced than classical control.

    Students learn followings and be able to analyze and design control systems using them.

    (1) State-space representation and transfer function

    (2) Controllability and observability, state feedback control, optimal control

    (3) Z-transform and pulse transfer function

    (4) Describing function and phase plane analysis

    (5) Correlation function and power spectrum of random signals

    Several assignments are offered. Materials and assignments are posted in Google classroom.

  •   制御工学Ⅱ / Control Engineering II  
      村田 智  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    古典制御理論(制御工学I)に続き,現代制御理論について学ぶ.

    2.概要

    本講義では,多変数の線形動的システムを制御する方法である状態空間法と呼ぶアプローチについて学ぶ.現代制御理論の主題は,状態方程式で表されたシステムの特性を解析する方法論と,望みの特性をもつシステムの設計法である.多変数の動的システムを状態方程式で表現する方法を学んだあと,安定性,可制御性,可観測性など,多変数システムの基本的な性質に関する基本概念を導入し,さらにそれをもちいて状態フィードバックによる極配置,オブザーバによる状態推定,最適レギュレータによる最適制御などの具体的な制御方策について学ぶ.

    3.達成目標

    与えられた動的システムを状態方程式で表現できるようになること.その可制御性,可観測性の判定法.状態フィードバック,極配置,オブザーバ,最適レギュレータなど,望みの特性をもつ制御系の設計方法を習得すること.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    Following classical control theory (Control Engineering I), learn about modern control theory.

    2. Overview

    In this lecture, we will study an approach called the state space method, which is a method to control multivariable linear dynamic systems. The main subject of modern control theory is how to analyze the characteristics of a system represented by the state equation and how to design a control system to achieve desired characteristics. After learning the representation method of a multivariable dynamic system with a state equation, we introduce basic concepts of multivariable systems, such as stability, controllability, and observability. We also learn specific control strategies based on concepts such as pole assignment by state feedback, state estimation by an observer, and optimal control by an optimal regulator.

    3. Goal

    To be able to express a given dynamic system by a state equation and determine its controllability and observability. To be able to design control systems with desired characteristics by using a method such as state feedback, pole assignment, observer, and optimal regulator.

  •   制御工学Ⅱ / Control Engineering II  
      岡島 淳之介  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    古典制御理論(制御工学I)に続き,現代制御理論について学ぶ.

    2.概要

    本講義では,多変数の線形動的システムを制御する方法である状態空間法と呼ぶアプローチについて学ぶ.現代制御理論の主題は,状態方程式で表されたシステムの特性を解析する方法論と,望みの特性をもつシステムの設計法である.多変数の動的システムを状態方程式で表現する方法を学んだあと,安定性,可制御性,可観測性など,多変数システムの基本的な性質に関する基本概念を導入し,さらにそれをもちいて状態フィードバックによる極配置,オブザーバによる状態推定,最適レギュレータによる最適制御などの具体的な制御方策について学ぶ.

    3.達成目標

    与えられた動的システムを状態方程式で表現できるようになること.その可制御性,可観測性の判定法.状態フィードバック,極配置,オブザーバ,最適レギュレータなど,望みの特性をもつ制御系の設計方法を習得すること.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    Following classical control theory (Control Engineering I), learn about modern control theory.

    2. Overview

    In this lecture, we will study an approach called the state space method, which is a method to control multivariable linear dynamic systems. The main subject of modern control theory is how to analyze the characteristics of a system represented by the state equation and how to design a control system to achieve desired characteristics. After learning the representation method of a multivariable dynamic system with a state equation, we introduce basic concepts of multivariable systems, such as stability, controllability, and observability. We also learn specific control strategies based on concepts such as pole assignment by state feedback, state estimation by an observer, and optimal control by an optimal regulator.

    3. Goal

    To be able to express a given dynamic system by a state equation and determine its controllability and observability. To be able to design control systems with desired characteristics by using a method such as state feedback, pole assignment, observer, and optimal regulator.

  •   制御工学Ⅱ / Control Engineering II  
      桒原 聡文  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    古典制御理論(制御工学I)に続き,現代制御理論について学ぶ.

    2.概要

    本講義では,多変数の線形動的システムを制御する方法である状態空間法と呼ぶアプローチについて学ぶ.現代制御理論の主題は,状態方程式で表されたシステムの特性を解析する方法論と,望みの特性をもつシステムの設計法である.多変数の動的システムを状態方程式で表現する方法を学んだあと,安定性,可制御性,可観測性など,多変数システムの基本的な性質に関する基本概念を導入し,さらにそれをもちいて状態フィードバックによる極配置,オブザーバによる状態推定,最適レギュレータによる最適制御などの具体的な制御方策について学ぶ.

    3.達成目標

    与えられた動的システムを状態方程式で表現できるようになること.その可制御性,可観測性の判定法.状態フィードバック,極配置,オブザーバ,最適レギュレータなど,望みの特性をもつ制御系の設計方法を習得すること.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    Following classical control theory (Control Engineering I), learn about modern control theory.

    2. Overview

    In this lecture, we will study an approach called the state space method, which is a method to control multivariable linear dynamic systems. The main subject of modern control theory is how to analyze the characteristics of a system represented by the state equation and how to design a control system to achieve desired characteristics. After learning the representation method of a multivariable dynamic system with a state equation, we introduce basic concepts of multivariable systems, such as stability, controllability, and observability. We also learn specific control strategies based on concepts such as pole assignment by state feedback, state estimation by an observer, and optimal control by an optimal regulator.

    3. Goal

    To be able to express a given dynamic system by a state equation and determine its controllability and observability. To be able to design control systems with desired characteristics by using a method such as state feedback, pole assignment, observer, and optimal regulator.

  •   (IMAC-U)制御工学Ⅱ / (IMAC-U)Control Engineering II  
      吉田 和哉  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    古典制御理論(制御工学I)に続き,現代制御理論について学ぶ.

    2.概要

    本講義では,多変数の線形動的システムを制御する方法である状態空間法と呼ぶアプローチについて学ぶ.現代制御理論の主題は,状態方程式で表されたシステムの特性を解析する方法論と,望みの特性をもつシステムの設計法である.多変数の動的システムを状態方程式で表現する方法を学んだあと,安定性,可制御性,可観測性など,多変数システムの基本的な性質に関する基本概念を導入し,さらにそれをもちいて状態フィードバックによる極配置,オブザーバによる状態推定,最適レギュレータによる最適制御などの具体的な制御方策について学ぶ.

    3.達成目標

    与えられた動的システムを状態方程式で表現できるようになること.その可制御性,可観測性の判定法.状態フィードバック,極配置,オブザーバ,最適レギュレータなど,望みの特性をもつ制御系の設計方法を習得すること.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    Following classical control theory (Control Engineering I), learn about modern control theory.

    2. Overview

    In this lecture, we will study an approach called the state space method, which is a method to control multivariable linear dynamic systems. The main subject of modern control theory is how to analyze the characteristics of a system represented by the state equation and how to design a control system to achieve desired characteristics. After learning the representation method of a multivariable dynamic system with a state equation, we introduce basic concepts of multivariable systems, such as stability, controllability, and observability. We also learn specific control strategies based on concepts such as pole assignment by state feedback, state estimation by an observer, and optimal control by an optimal regulator.

    3. Goal

    To be able to express a given dynamic system by a state equation and determine its controllability and observability. To be able to design control systems with desired characteristics by using a method such as state feedback, pole assignment, observer, and optimal regulator.

  •   システム制御工学A / Control Systems Engineering A  
      張山 昌論  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目 的 

     フィードバック制御系の解析と設計の基礎理論の修得を目的とする。

    2.概 要 

     フィードバックの概念とフィードバック制御系の構成を理解する。ついで、システムの微分方程式表現、伝達関数、周波数伝達関数および安定性などの基本事項を学んだ上で、フィードバック制御系設計の方法と具体的手順とを修得する。

    3.達成目標等

     下記の各項目を理解し、具体的な例題について解析あるいは設計ができるようにする。

    (1)線形システムの微分方程式表現および伝達関数

    (2)フィードバック系の安定判別の諸手法

    (3)過渡特性と周波数特性の関係および定常偏差

    (4)周波数応答法による設計手順

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    To learn the basic theory of analysis and design of feedback control.

    Abstract:

    First, the concept of feedback and the configuration of feedback control systems are introduced. Next, the basic items such as differential equation expression, transfer function, frequency transfer function, and stability of systems are learnt. Finally, the concrete methods and procedures for feedback control systems are acquired.

    Goals:

    The followings should be understood, and the analysis and design for feedback control systems should be attained in concrete examples.

    (1) Differential equation expression and transfer function of linear systems

    (2) Methods for stability discrimination of feedback systems

    (3) Relationship among transient response, frequency characteristics and steady state error.

    (4) Design methods with frequency response.

  •   システム制御工学A / Control Systems Engineering A  
      渡邉 高志  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目 的 

     フィードバック制御系の解析と設計の基礎理論の修得を目的とする。

    2.概 要 

     フィードバックの概念とフィードバック制御系の構成を理解する。ついで、システムの微分方程式表現、伝達関数、周波数伝達関数および安定性などの基本事項を学んだ上で、フィードバック制御系設計の方法と具体的手順とを修得する。

    3.達成目標等

     下記の各項目を理解し、具体的な例題について解析あるいは設計ができるようにする。

    (1)線形システムの微分方程式表現および伝達関数

    (2)フィードバック系の安定判別の諸手法

    (3)過渡特性と周波数特性の関係および定常偏差

    (4)周波数応答法による設計手順

    Google Classroom class codes should be found on the School of Engineering website.

    Undergraduate Syllabus and Timetable (https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    Objective:

    To learn the basic theory of analysis and design of feedback control.

    Abstract:

    First, the concept of feedback and the configuration of feedback control systems are introduced. Next, the basic items such as differential equation expression, transfer function, frequency transfer function, and stability of systems are learnt. Finally, the concrete methods and procedures for feedback control systems are acquired.

    Goals:

    The followings should be understood, and the analysis and design for feedback control systems should be attained in concrete examples.

    (1) Differential equation expression and transfer function of linear systems

    (2) Methods for stability discrimination of feedback systems

    (3) Relationship among transient response, frequency characteristics and steady state error.

    (4) Design methods with frequency response.

  •   システム制御工学A / Control Systems Engineering A  
      杉田 典大  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目 的 

     フィードバック制御系の解析と設計の基礎理論の修得を目的とする。

    2.概 要 

     フィードバックの概念とフィードバック制御系の構成を理解する。ついで、システムの微分方程式表現、伝達関数、周波数伝達関数および安定性などの基本事項を学んだ上で、フィードバック制御系設計の方法と具体的手順とを修得する。

    3.達成目標等

     下記の各項目を理解し、具体的な例題について解析あるいは設計ができるようにする。

    (1)線形システムの微分方程式表現および伝達関数

    (2)フィードバック系の安定判別の諸手法

    (3)過渡特性と周波数特性の関係および定常偏差

    (4)周波数応答法による設計手順

    Google Classroom class codes should be found on the School of Engineering website.

    Undergraduate Syllabus and Timetable (https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    Objective:

    To learn the basic theory of analysis and design of feedback control.

    Abstract:

    First, the concept of feedback and the configuration of feedback control systems are introduced. Next, the basic items such as differential equation expression, transfer function, frequency transfer function, and stability of systems are learnt. Finally, the concrete methods and procedures for feedback control systems are acquired.

    Goals:

    The followings should be understood, and the analysis and design for feedback control systems should be attained in concrete examples.

    (1) Differential equation expression and transfer function of linear systems

    (2) Methods for stability discrimination of feedback systems

    (3) Relationship among transient response, frequency characteristics and steady state error.

    (4) Design methods with frequency response.

  •   システム制御工学A / Control Systems Engineering A  
      石黒 章夫  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目 的 

     フィードバック制御系の解析と設計の基礎理論の修得を目的とする。

    2.概 要 

     フィードバックの概念とフィードバック制御系の構成を理解する。ついで、システムの微分方程式表現、伝達関数、周波数伝達関数および安定性などの基本事項を学んだ上で、フィードバック制御系設計の方法と具体的手順とを修得する。

    3.達成目標等

     下記の各項目を理解し、具体的な例題について解析あるいは設計ができるようにする。

    (1)線形システムの微分方程式表現および伝達関数

    (2)フィードバック系の安定判別の諸手法

    (3)過渡特性と周波数特性の関係および定常偏差

    (4)周波数応答法による設計手順

    Google Classroom class codes should be found on the School of Engineering website.

    Undergraduate Syllabus and Timetable (https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    Objective:

    To learn the basic theory of analysis and design of feedback control.

    Abstract:

    First, the concept of feedback and the configuration of feedback control systems are introduced. Next, the basic items such as differential equation expression, transfer function, frequency transfer function, and stability of systems are learnt. Finally, the concrete methods and procedures for feedback control systems are acquired.

    Goals:

    The followings should be understood, and the analysis and design for feedback control systems should be attained in concrete examples.

    (1) Differential equation expression and transfer function of linear systems

    (2) Methods for stability discrimination of feedback systems

    (3) Relationship among transient response, frequency characteristics and steady state error.

    (4) Design methods with frequency response.

もっと見る…