内容に類似性のあるシラバス

64 件ヒット (0.02秒):

  •   エネルギーシステム工学特論 / Advanced Energy Systems Engineering  
      湯上 浩雄, 茂田 正哉, 清水 信, 琵琶 哲志  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    エネルギ一変換工学および関連分野の中でも,熱および流体エネルギーの新しい制御と利用法や再生可能エネルギー利用技術,熱音響現象とプラズマ熱流体現象,およびその応用に関して,広範で,かつ深い専門知識を講義すると共に,現時点における問題点の発掘とそれに対応する新しい問題解決方法を考究し,博士課程学生の問題発見・設定能力の涵養に主眼をおく。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/doctoral.html (under "Timetable & Course Description")

    This course provides students with deep knowledge on the broad topics selected from energy conversion engineering and related fields, such as the control and application methods of heat and fluid energy including renewable energy technology, thermoacoustics, and plasma thermofluid processing. Emphasis is placed on improvement of the students’ ability to find out the problems and to pursue the solution to them.

  •   エネルギー材料科学 / Material science for energy  
      小俣 孝久, 飯塚 淳, 大塚 誠, 加納 純也, 柴田 悦郎, 高橋 英志, 福山 博之  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    [2023年度講義の情報] 本講義に関してはGoogle Classroomのクラスコード ww7xgxv でお知らせします。上手く接続できない場合などは高橋英志教授(hideyuki.takahashi.c2@tohoku.ac.jp)までメール連絡を下さい。メール送信後数日以内に高橋より返事が無い場合は、届いていないことを意味しますので、再送等をお願いいたします。

    目的:

    本講義では,電子エネルギー材料、化学エネルギー材料、再生可能エネルギー利用技術について概説し、それらエネルギー材料を支える材料プロセスおよびエネルギ材料を用いたデバイス応用について理解することを目的とする。

    概要:

    本講義は、総論、電子エネルギー材料、化学エネルギー材料および再生可能エネルギー利用技術から構成されるオムニバス形式の講義である。総論では、エネルギー材料の基礎となる熱力学の法則などについて概説する。電子エネルギー材料では、太陽電池や熱電変換材料について、化学エネルギー材料では、水素製造・貯蔵用材料 + 二次電池材料、光触媒や燃料電池材料について基礎から応用まで学習する。再生可能エネルギー利用技術では、バイオマスを取り上げ、その種類やエネルギー源としての利用について学習する。

    達成方法:

    各講義を受講することに加え、講義に関連する内容について、さらに小テストあるいはレポートが課される。これらに取り組むことによって、エネルギー材料科学に関する知識を身につけ、自らエネルギー材料に関する課題を設定する力を養う。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    [2023 class information] Please contact to Google Classroom ww7xgxv if you join to this class. If you cannot access to this classroom, please send e-mail to Prof. Takahashi (hideyuki.takahashi.c2@tohoku.ac.jp) .

    This course provides overview of materials science for energy, electronic materials for energy, materials for energy through chemical reactions, and utilization of renewable energy including their material processes and device applications.

    Students learn materials science for energy through an omnibus style course. In the overview, fundamental thermodynamics and some device application for energy are lectured. Solar cells and thermoelectric materials are lectured in the electronic materials for energy. Materials for hydrogen generation/storage, secondary batteries, photocatalysts and fuel cells are lectured in the materials for energy through chemical reactions. Finally, biomass is lectured in the utilization of renewable energy.

  •   プラズマエネルギー工学 / Plasma Energy and Engineering  
      髙橋 和貴  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    1.目的

    宇宙空間プラズマ,核融合プラズマ,電気推進機プラズマなど多様なパラメータ領域で観測される電磁流体現象を理解するために、電磁流体としてのプラズマ現象について理解を深め、電磁流体加速の原理や宇宙推進技術への応用、核融合プラズマ閉じ込めなど、プラズマエネルギーの基礎から応用までの総合的な理解をえる。

    2.概要

    流体の基礎方程式から、電磁的な効果を加えた電磁流体力学について紹介すると共に、プラズマの集団的な挙動や電磁流体波、衝撃波など多様なパラメータ領域で観測される電磁流体現象に関して講義する。

    3.達成目的等

    この授業では,主に以下のような能力を修得することを目的とする。

    ・プラズマの集団現象を司る基礎パラメータの理解

    ・電磁流体としてのプラズマの基礎方程式

    ・特徴ある電磁流体現象の理解

    ・プラズマの電気推進や核融合応用に関する理解

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    In order to understand the electromagnetic fluid phenomena observed in various parameter regions in space plasmas, fusion plasmas, and electric propulsion devices, the lecture aims to deepen the understanding of plasma phenomena as an electromagnetic fluid and to obtain a comprehensive understanding of plasma energy from basics to applications, such as the principle of electromagnetic fluid acceleration and application to space propulsion technology, and confinement of fusion plasma.

    From the basic equations of fluids, we will introduce magnetohydrodynamics with electromagnetic effects, and give lectures on the collective behavior of plasma and magnetohydrodynamic phenomena observed in various parameter regions such as electromagnetic fluid waves and shock waves.

    The main purpose of this class is to acquire the following abilities.

    ・ Understanding the basic parameters that govern the collective phenomena in plasmas

    ・ Basic equation of plasma as electromagnetic fluid

    ・ Understanding of characteristics of electromagnetic fluid

    ・ Understanding of electric propulsion and fusion application

  •   機能性流体工学 / Functional Fluids Engineering  
      佐藤 岳彦, 茂田 正哉, 高奈 秀匡  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

     本講義は,機能性流体におけるプラズマ流と電磁応答流体の基礎と応用について講義する.

     プラズマ流は,熱,光,圧力,化学種,荷電粒子,電界など,様々な刺激を生体に与える。この作用を利用したプラズマ医療工学の基礎と応用を,流体工学,プラズマ工学,生体工学の各視点から論じる。また,輸送現象,プラズマ生成現象,生体反応現象について,流体計測法,プラズマ計測法,生体反応計測法といった計測手法と共に講義し,各現象の相互作用について理解する。また,プラズマ医療工学を通して,人類が直面する健康問題の現状と将来についてや生命とプラズマの関わりについて考える.

     また,特異な物性をもつ熱プラズマと呼ばれる1万度を超える高温の流体の基礎的な物理を学習し,アーク溶接・プラズマ溶射・ナノ粒子大量生成プロセスといった熱プラズマ応用プロセスについての知識を得ることを通して,流体・熱・物質輸送の種々の現象が重畳する工学プロセスを理解・設計できる素地を養う.

     さらに,電磁場下で機能性を発現する電磁応答流体である磁性流体,MR流体,ER流体,イオン液体について,それら流体の機能性発現機構を物理化学的立場から理解し,それらの機能性を利用した工学的先進応用として環境・エネルギー応用および航空宇宙応用を中心に概説する.

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    This lecture gives a lecture on plasma flow and electromagnetical response fluids in functional fluids.

    Plasma flow is capable of generating heat, light, pressure, chemical species, charged particles and electric field and can stimulate cells/tissues. This course includes phenomena of transport, plasma generation and biological responses for plasma medicine and those measurement methods. Finally, we discuss about present and future of human healthcare and how we control diseases such as pandemic infection through plasma medicine, and we also discuss about relationships between living things and plasma.

       The fundamental physics of thermal plasma which is high-temperature fluid over 10,000 K with unique properties is discussed as well. The widely ranging knowledges of thermal plasma applications such as arc welding, plasma spraying, and nanoparticle mass-production are given. Those contents support to gain the abilities of understanding and designing various engineering processes with fluid, heat and mass transfers.

       Furthermore, this lecture offers fundamental knowledge on electro-magnetic filed responsive fluids such as magnetic fluid, magneto-rheological (MR) / electro-rheological (ER) fluid, or ionic liquid to understand the mechanism of exhibiting their functionalities under electro-magnetic field from the physico-chemical point of view. The cutting-edge industrial applications of these electro-magentic field responsive fluids will be provided especially in the field of environmental, energy and aerospace engineering.

  •   基盤流体力学 / Fluid Dynamics  
      茂田 正哉  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    本授業の目的は,空力応用や材料プロセスといった産業分野にみられる複雑な流体運動の本質を見抜き,予測できる直観力,そしてその制御法を設計するための基盤知識も会得することである。流体力学の定理や支配方程式といった数学的記述のみならず,実験研究による可視化画像や観察動画,および理論に裏付けられたシミュレーションによるコンピュータグラフィックスアニメーションを用いて,流体の自然な振舞いを理解し,その物理に対する洞察力を磨くことで,目的の達成に臨む。また,身近な流体にとどまらず,雷に代表されるプラズマ流体(超高温の電離気体)の特性について学ぶことで自然界への見識を広げ,それらの応用技術の知識も得ることによって新しい流体工学が果たす社会貢献についての理解を深める。これらの一連の内容を英語で聴き,議論しながら課題に取り組む経験を通して,国際舞台で活動するためのコミュニケーション能力の研鑽も兼ねた土台形成も図る。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    The purposes are for students to develop the intuition to understand the nature of flow and predict the complex fluid motions, which appear in various industries such as aerodynamic applications and material processes, and also to acquire the basic knowledge to design the control methods. Through studying Fluid Dynamics with not only the mathematical descriptions of theorems and governing equations but also visualized images and observation videos in experiments and computer graphic animations of simulations based on theories, students improve their abilities to discuss the natural behavior of fluid and develop their insights into physics of fluid for achieving those purposes. By learning not only about normal fluids but also about plasma fluids (very high-temperature ionized gases), such as lightning, students will broaden the insight into the nature and deepen the understanding of the contributions that new fluid mechanics can make to society by acquiring knowledge of their applied technologies. Simultaneously, this course aims to polish communication skills and to build the foundations for students to play important roles on the global stage through their experiences of listening to the lectures and having discussions to solve the problems in English.

  •   電気エネルギー発生工学 / Electric Power Generation Engineering  
      斎藤 浩海  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    この科目では、Classroomを使用して講義資料と講義情報を発信します。

    クラスコードは e7j3vq2 です。

    Classroomにアクセスし、クラスコードを入力してください。

    1.目的

     電力発生は、化石燃料などの一次エネルギー資源や太陽光、風力などの再生可能エネルギーを電気エネルギーに変換するプロセスである。この授業では、現在の電力システムで実用化されている発電方式を中心に、発電原理の基礎と特徴を学ぶ。

    2.概要

     電力発生とエネルギー資源、環境問題との関わりについて概観した後、水力発電、火力発電、原子力発電のそれぞれの発電原理と特徴を学ぶ。さらに、熱エネルギーの効率的な利用法、再生可能エネルギー、発電機の出力制御と電源運用の基礎を学ぶ。

    3.達成目標等

     この授業では、主に以下の能力を習得することを目標とする。

    ・エネルギー資源と電力発生の関係を理解し、説明することができる。

    ・各種発電方式の原理を理解し、エネルギー変換に関する基礎計算をすることができる。

    ・発電機出力の制御機構と電力系統における各電源の役割を理解し、説明することができる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

        Electric power generation is a process of transforming primary energy resources such as fossil fuel and renewable energy such as solar power and wind power to electric power. In the course, the basics of electric power generation and the generation plants used for modern electric power systems are studied.

    2. Summary

        First, electric power generation, energy resource and the relevance to environment problems are summarized. Next, the principles and features of electric power generation using hydro power, thermal power and nuclear power are studied. Furthermore, efficient use of thermal and renewable energy and the basics of generation control and operation are also studied.

    3.Goal of the course

     - The relation between primary energy resources and electric power generation is understood and it can be explained.

     - The principles of hydro, thermal and nuclear power generation systems are understood, and the basic calculation related to energy transformation can be done.

     - The mechanism of generation control and the role of each generation system in electric power systems are understood and those can be explained.

  •   プラズマ物理・核融合学 / Plasma Physics and Fusion Energy  
      飛田 健次, 大石 鉄太郎, 髙橋 宏幸  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    本講では、核融合エネルギーの全体像とその基礎となるプラズマ物理及び核融合炉工学の理解を目指す。

    授業の前半には、プラズマの基本的振る舞い、磁場中での荷電粒子の軌道、粒子的側面(衝突や拡散)、流体的側面などプラズマ物理学の基礎を概説したのち、プラズマ閉じ込めのための磁場構造、プラズマの平衡と安定性、プラズマ輸送など、核融合プラズマの閉じ込めに関する物理を解説する。

    授業の後半では、核融合を実現するための応用技術として、プラズマ加熱、プラズマ計測、材料科学、核融合炉システムの概要を解説する。

    ・講義に関連する情報、講義資料、レポート課題及び小テスト問題は、すべてGoogle Classroomに掲示する。受講を希望する学生は必ずGoogle classroomに登録すること。

    ・講義は、対面で行う。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    The aim of this course is to develop a comprehensive understanding of fusion energy. In the initial part of the course, fundamental concepts of plasma physics will be introduced, emphasizing plasma behaviors such as charged particle motions, collisional effects, and fluid dynamics. Moreover, the basics of fusion plasma will be elucidated, building upon principles of plasma physics. This section will encompass topics like magnetohydrodynamic equilibrium, stability of fusion plasma, and plasma transport. In the latter half of the course, various applications toward fusion energy will be explored, including plasma heating, diagnostics, materials science, and fusion reactor systems.

    • All essential information, lecture notes, report assignments and small tests will be posted on Google Classroom.

    • Lectures will be conducted in person.

  •   エネルギー資源学特論 / Advanced Energy and Resource Sciences  
      川田 達也  
      環境  
       
      前期集中 その他 連講  

    1.目的

    ・資源とエネルギーに係わる地下利用と地下工学について学ぶ。

    ・超高温・超臨界流体を利用する新しい地熱エネルギー利用の科学・技術について理解する。

    ・太陽光を利用したエネルギー創製デバイスに関して、その概要と社会的および技術的課題を学習し、エネルギーと資源に関わる課題を解決するための素養を習得する。

    ・エネルギーデバイスの開発・実用化において生じる種々の課題について学ぶ。

    2.概要

    ・資源開発と地球温暖化対策を含めたエネルギーに係わる地下利用の実体ならびに水圧破砕法に代表される主要な地下工学について講述する.

    ・地熱エネルギーの新しい科学・技術としての超高温・超臨界流体の利用と,貯留層形成,地圏での化学物質の挙動について解説する。

    ・太陽光を利用したエネルギー創製デバイスの例として太陽電池を取り上げ、その動作原理、効率の決定機構、技術の現状を概観し、その利用拡大に向けた技術的および社会的課題を洗い出し、向かうべき将来の方向性について考える。

    ・エネルギー変換技術の例として固体酸化物形燃料電池/電解技術を取り上げ,その原理発見から実用化に向けた研究・開発を概観し,エネルギー変換技術の開発の課題について考える。

    3.達成目標等

    ・資源・エネルギーに係わる地下利用の課題と可能性を例示することができる.

    ・地熱利用の新しい科学・技術について,例示することができる.

    ・太陽電池の動作原理を理解し,技術的および社会的課題について例示することができる.

    ・エネルギー関連デバイスの開発における課題と解決策を例示することができる.

  •   (IMAC-U)熱力学Ⅰ / (IMAC-U)Thermodynamics I  
      早川 晃弘, 徳増 崇  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

     熱力学の基本概念と基礎原理を理解し、工業への応用力を養成することを目的とする。特に、近年重要となってきた、地球規模の環境問題に関わるエネルギーの有効利用や省エネルギーの基本概念を理解する。さらに、エンジンや発電所などの熱流体機器の動作原理を学び、人類が限られたエネルギー資源を有効に利用する基本原理を学ぶ。

    2.概要

     熱力学の基本原理である系・物質・エネルギーの基本概念から始まり、熱力学第1法則と第2法則を理解し、物質の状態変化を定量的に学ぶ。さらに、ピストンエンジン・ジェットエンジン・蒸気サイクル・冷凍機などの熱機関の動作原理と効率の習得を通して、エネルギーの有効利用についての基本概念を理解する。さらに、物質の状態量変化に関する一般関係やエクセルギー(有効エネルギー)も学ぶ。

    3.達成目標等

     この講義では、主に以下の事柄を理解し修得することを目標とする。

     ・熱力学の基本概念の理解と定量的計算が可能な応用力の修得

     ・熱機関の動作原理を理解し、実在機器の基本的な性能や効率計算ができるようになること

     ・地球規模の環境問題を念頭において、エネルギーの有効利用の基本概念を理解すること

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objectives

    Our main objective is to understand the basic concept and principle of thermodynamics and apply the knowledge to the industries. We will also learn about effective utilization of energy and energy saving, which have been closely related to global environmental problems which become important now. In addition, through learning about the operation principles of thermal fluid apparatus like engine and power plant, we will study the fundamental principles in which human beings use the limited energy resource efficiently.

    2. Overviews

    We will start with the basic principle of thermodynamics such as the concept of system, matter and energy, and understand the first and second laws of thermodynamics. We will also learn about the state changes of matter quantitatively. Moreover, we will learn about the operation principles and efficiency of heat engine, such as piston engine, jet engine, steam cycle and refrigeration machine. Through the knowledge, we will understand the basic concept.

    3. Goals

    This course aims to mainly understand and achieve three primary goals mentioned below:

    (1) To understand the basic concept of thermodynamics and to acquire the quantitative calculation ability.

    (2) To understand the operation principles of heat engine and estimate the fundamental characteristics and efficiency of real heat engine with the knowledge.

    (3) To understand the basic concept of effective utilization of energy with global environmental problems in mind of effective utilization of energy. We will comprehend the general thermodynamic relation about the state changes of matter and exergy (effective energy).

  •   熱科学・工学B / Thermal Science and Engineering B  
      小宮 敦樹, 小原 拓, 菊川 豪太, 庄司 衛太, 琵琶 哲志  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    本講義では,ミクロからマクロスケールに至る熱エネルギー変換および伝熱現象の基礎物理を理解し,その知識を工学的応用に結び付けることができる能力を養成することを目的とする。特に,(1) 熱流体現象の分子動力学表現と分子スケール解析,(2) 振動流れや音響振動に基づく熱輸送とエネルギー変換の基礎,(3)マルチスケールにおける熱物質輸送現象の可視化と制御,(4) 界面現象に関わる熱統計力学,に特化した講義を展開し,これらの講義を通して,熱現象および輸送現象の本質の理解を一層深め,工学分野おける実用機器への応用が可能となるようにする.

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    The students will master the basic physics of thermal energy conversion and heat transfer in both micro and macroscopic scales, and learn to link this knowledge to engineering applications. More specifically, the series lectures: i) the Molecular Dynamics and molecular-scale analyses of thermo-fluid phenomena, ii) oscillating-flow based heat transfer and energy conversion, iii) visualization and control of multi-scale heat and mass transfer, and iv) statistical mechanics regarding interface phenomena will be done. Students are expected further deepen their understanding of the essence of thermal phenomena.

もっと見る…