内容に類似性のあるシラバス

2610 件ヒット (0.022秒):

  •   プロセス制御 / Process Control  
      久保 正樹  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    化学プロセスの安全運転ならびに製品品質管理には、プロセス制御が不可欠である。この授業では、プロセスの制御システム設計に必要となる制御理論の基礎について学ぶ。

    2.概要

    「プロセス工学基礎」で学んだことを基にして、線形システムの動的挙動の解析、種々のプロセス制御法の原理およびプロセス制御システム設計法について、簡単な化学プロセスの例を用いて学ぶ。

    3.達成目標等

    この授業では、主に以下のような能力を修得することを目標とする。

    ・化学プロセスを安全に運転し、製品品質の適切な管理のために必要な、プロセス制御の役割を理解し、説明することができる。

    ・化学装置の動的モデルを作ることができ、その解析を行うことができる。

    ・種々のプロセス制御法の原理を理解し、その特徴を説明することができる。

    ・化学プロセスの制御システム設計法の特徴を説明することができる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    The purpose of this course is to acquire basic knowledge necessary for design of control systems for chemical processes. The analysis of dynamic behavior of linear systems, design of various feedback control systems and advanced process control systems are explained, showing concrete examples of chemical processes.

  •   プロセス工学基礎 / Basic Process Engineering  
      北川 尚美, 久保 正樹  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

      化学プロセス並びに装置の合理的設計と安全操作は化学製品の工業的生産に必須である。この授業では主として化学反応操作と化学プロセス制御の基礎について学ぶ。

    2.概要

      化学量論、物質収支ならびに反応速度論を基にして、回分反応、半回分反応、連続反応装置とその操作を学び、更に簡単な化学プロセスを例にして安全操作に必須であるプロセス制御並びに制御システム設計法の基礎を学ぶ。

    3.達成目標等

     この講義では以下のような能力を修得することを目標とする。

     1)定圧反応と定容反応ならびに回分反応器、半回分反応器、連続反応器の特徴を理解し、説明できること。

     2)各種反応器の選択あるいはその組み合わせによる最適反応操作の設計ができること。

     3)プロセス制御の意味を理解し、説明できること。

     4)簡単なプロセスの動的モデルを導き,解析することができること。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    The following basic matters for chemical reaction engineering and process control are explained.

    1. Chemical reactions and reactors

    2. Design of batch reactor, continuous tubular reactor and continuous stirred-tank reactor

    3. Analysis of complex chemical reactions

    4. Overview of process control system

    5. Modeling and analysis of dynamic process behavior

  •   制御工学Ⅱ / Control Engineering II  
      村田 智  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    古典制御理論(制御工学I)に続き,現代制御理論について学ぶ.

    2.概要

    本講義では,多変数の線形動的システムを制御する方法である状態空間法と呼ぶアプローチについて学ぶ.現代制御理論の主題は,状態方程式で表されたシステムの特性を解析する方法論と,望みの特性をもつシステムの設計法である.多変数の動的システムを状態方程式で表現する方法を学んだあと,安定性,可制御性,可観測性など,多変数システムの基本的な性質に関する基本概念を導入し,さらにそれをもちいて状態フィードバックによる極配置,オブザーバによる状態推定,最適レギュレータによる最適制御などの具体的な制御方策について学ぶ.

    3.達成目標

    与えられた動的システムを状態方程式で表現できるようになること.その可制御性,可観測性の判定法.状態フィードバック,極配置,オブザーバ,最適レギュレータなど,望みの特性をもつ制御系の設計方法を習得すること.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    Following classical control theory (Control Engineering I), learn about modern control theory.

    2. Overview

    In this lecture, we will study an approach called the state space method, which is a method to control multivariable linear dynamic systems. The main subject of modern control theory is how to analyze the characteristics of a system represented by the state equation and how to design a control system to achieve desired characteristics. After learning the representation method of a multivariable dynamic system with a state equation, we introduce basic concepts of multivariable systems, such as stability, controllability, and observability. We also learn specific control strategies based on concepts such as pole assignment by state feedback, state estimation by an observer, and optimal control by an optimal regulator.

    3. Goal

    To be able to express a given dynamic system by a state equation and determine its controllability and observability. To be able to design control systems with desired characteristics by using a method such as state feedback, pole assignment, observer, and optimal regulator.

  •   制御工学Ⅱ / Control Engineering II  
      岡島 淳之介  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    古典制御理論(制御工学I)に続き,現代制御理論について学ぶ.

    2.概要

    本講義では,多変数の線形動的システムを制御する方法である状態空間法と呼ぶアプローチについて学ぶ.現代制御理論の主題は,状態方程式で表されたシステムの特性を解析する方法論と,望みの特性をもつシステムの設計法である.多変数の動的システムを状態方程式で表現する方法を学んだあと,安定性,可制御性,可観測性など,多変数システムの基本的な性質に関する基本概念を導入し,さらにそれをもちいて状態フィードバックによる極配置,オブザーバによる状態推定,最適レギュレータによる最適制御などの具体的な制御方策について学ぶ.

    3.達成目標

    与えられた動的システムを状態方程式で表現できるようになること.その可制御性,可観測性の判定法.状態フィードバック,極配置,オブザーバ,最適レギュレータなど,望みの特性をもつ制御系の設計方法を習得すること.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    Following classical control theory (Control Engineering I), learn about modern control theory.

    2. Overview

    In this lecture, we will study an approach called the state space method, which is a method to control multivariable linear dynamic systems. The main subject of modern control theory is how to analyze the characteristics of a system represented by the state equation and how to design a control system to achieve desired characteristics. After learning the representation method of a multivariable dynamic system with a state equation, we introduce basic concepts of multivariable systems, such as stability, controllability, and observability. We also learn specific control strategies based on concepts such as pole assignment by state feedback, state estimation by an observer, and optimal control by an optimal regulator.

    3. Goal

    To be able to express a given dynamic system by a state equation and determine its controllability and observability. To be able to design control systems with desired characteristics by using a method such as state feedback, pole assignment, observer, and optimal regulator.

  •   制御工学Ⅱ / Control Engineering II  
      桒原 聡文  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    古典制御理論(制御工学I)に続き,現代制御理論について学ぶ.

    2.概要

    本講義では,多変数の線形動的システムを制御する方法である状態空間法と呼ぶアプローチについて学ぶ.現代制御理論の主題は,状態方程式で表されたシステムの特性を解析する方法論と,望みの特性をもつシステムの設計法である.多変数の動的システムを状態方程式で表現する方法を学んだあと,安定性,可制御性,可観測性など,多変数システムの基本的な性質に関する基本概念を導入し,さらにそれをもちいて状態フィードバックによる極配置,オブザーバによる状態推定,最適レギュレータによる最適制御などの具体的な制御方策について学ぶ.

    3.達成目標

    与えられた動的システムを状態方程式で表現できるようになること.その可制御性,可観測性の判定法.状態フィードバック,極配置,オブザーバ,最適レギュレータなど,望みの特性をもつ制御系の設計方法を習得すること.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    Following classical control theory (Control Engineering I), learn about modern control theory.

    2. Overview

    In this lecture, we will study an approach called the state space method, which is a method to control multivariable linear dynamic systems. The main subject of modern control theory is how to analyze the characteristics of a system represented by the state equation and how to design a control system to achieve desired characteristics. After learning the representation method of a multivariable dynamic system with a state equation, we introduce basic concepts of multivariable systems, such as stability, controllability, and observability. We also learn specific control strategies based on concepts such as pole assignment by state feedback, state estimation by an observer, and optimal control by an optimal regulator.

    3. Goal

    To be able to express a given dynamic system by a state equation and determine its controllability and observability. To be able to design control systems with desired characteristics by using a method such as state feedback, pole assignment, observer, and optimal regulator.

  •   化学・バイオ工学演習C / Exercises C  
      高橋 厚  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    化学工学に関連する講義で得られた知識をもとに、化学装置とプロセスの設計・運転に必要な事項を習得する。

    2.概要

    流動・伝熱・移動現象・相平衡・反応工学・プロセス制御・プロセス設計と、蒸留・熱交換・抽出・吸着・吸収・反応・乾燥・分離・撹拌について具体的な例を用いて基礎的な演習を行う。

    3.達成目標等

    この演習では、主に以下のような能力を習得することを目標とする。

     ・化学工学の基礎的なモデル化手法を理解し、モデル化と定量的な解析ができる。

     ・各種の化学装置とプロセスについて理解し、それぞれの基礎的な設計ができる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    Students learn topics required for design and operation of chemical equipment and processes based on the knowledge obtained from the lectures related to chemical engineering.

    2. Outline

    Students do fundamental practices for fluid flow, heat transfer, transport phenomena, phase change, reaction engineering, and process control and design as well as distillation, heat exchanger, extraction, absorption, reaction, drying, separation and stirring by using the specific examples.

    3. Goal

    The goal of this practice is to mainly acquire the following skills:

    - To understand the fundamental modeling methodology of chemical engineering and to perform modeling and quantitative analysis.

    - To understand the various chemical equipment and processes and to do their basic design.

  •   ナノ材料開発工学 / Nanomaterials Design and Engineering  
      笘居 高明, 岩瀬 和至  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    ナノ材料、ナノ材料製品の開発における、企画・製品設計・材料設計のアプローチを説明し、さらにその製造プロセスの設計について議論する。

    具体的には、社会ニーズの把握、それに応える製品構造の予測、その製品において材料に求められる機能とその達成のための材料設計について説明する。

    さらに、ナノ材料の様々な階層における構造制御のためのプロセス設計にについて説明する。

    以上のナノ材料、製品開発を題材に、化学工学の視点に基づく課題解決の方法論を学ぶ。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    The approaches for nanomaterials and their products design will be explained, and their manufacturing processes will be discussed.

    Through the lecture for nanomaterials and their product development, this course focused on the methodology of problem solving based on chemical engineering.

  •   多相系プロセス設計工学 / Multi-Phase Process Design Engineering  
      久保 正樹  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    優れた機能を有する製品を製造するためには,装置やプロセスの中で起こる現象(輸送現象といったマクロスケールの現象だけでなく,製品の物性や機能に関わるナノ・メゾスケールの現象)を十分理解し,製品の物性や機能を制御するためのプロセスの設計・制御の方法論を確立する必要がある。本講義では,化学工業プロセスをはじめ多くのプロセスが多相系であることを考慮し,表面張力や濡れなどの界面現象,界面を介しての輸送現象,異相界面が関わるナノ・メゾスケールの現象の基礎を説明するとともに,多相系プロセスの設計・制御において不可欠な現象のモデル化及び数値解析手法について講義する。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    To produce materials with various functions and high quality, it is important to acquire a correct knowledge of both macroscopic and microscopic phenomena in materials processing which determine the properties and functions of materials, and then to establish the procedure or guideline of process design and control being based on the knowledge. Since many chemical processes involve the multiphase system such as liquid/gas or liquid/liquid phases, in this lecture, interfacial phenomena such as surface tension and wetting, transport phenomena through the interface and meso-microscopic phenomena at the interface between two phases are introduced. The mathematical modeling and numerical simulation of multiphase processes are also presented.

  •   (IMAC-U)制御工学Ⅱ / (IMAC-U)Control Engineering II  
      吉田 和哉  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    古典制御理論(制御工学I)に続き,現代制御理論について学ぶ.

    2.概要

    本講義では,多変数の線形動的システムを制御する方法である状態空間法と呼ぶアプローチについて学ぶ.現代制御理論の主題は,状態方程式で表されたシステムの特性を解析する方法論と,望みの特性をもつシステムの設計法である.多変数の動的システムを状態方程式で表現する方法を学んだあと,安定性,可制御性,可観測性など,多変数システムの基本的な性質に関する基本概念を導入し,さらにそれをもちいて状態フィードバックによる極配置,オブザーバによる状態推定,最適レギュレータによる最適制御などの具体的な制御方策について学ぶ.

    3.達成目標

    与えられた動的システムを状態方程式で表現できるようになること.その可制御性,可観測性の判定法.状態フィードバック,極配置,オブザーバ,最適レギュレータなど,望みの特性をもつ制御系の設計方法を習得すること.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    Following classical control theory (Control Engineering I), learn about modern control theory.

    2. Overview

    In this lecture, we will study an approach called the state space method, which is a method to control multivariable linear dynamic systems. The main subject of modern control theory is how to analyze the characteristics of a system represented by the state equation and how to design a control system to achieve desired characteristics. After learning the representation method of a multivariable dynamic system with a state equation, we introduce basic concepts of multivariable systems, such as stability, controllability, and observability. We also learn specific control strategies based on concepts such as pole assignment by state feedback, state estimation by an observer, and optimal control by an optimal regulator.

    3. Goal

    To be able to express a given dynamic system by a state equation and determine its controllability and observability. To be able to design control systems with desired characteristics by using a method such as state feedback, pole assignment, observer, and optimal regulator.

  •   システム制御工学A / Control Systems Engineering A  
      張山 昌論  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目 的 

     フィードバック制御系の解析と設計の基礎理論の修得を目的とする。

    2.概 要 

     フィードバックの概念とフィードバック制御系の構成を理解する。ついで、システムの微分方程式表現、伝達関数、周波数伝達関数および安定性などの基本事項を学んだ上で、フィードバック制御系設計の方法と具体的手順とを修得する。

    3.達成目標等

     下記の各項目を理解し、具体的な例題について解析あるいは設計ができるようにする。

    (1)線形システムの微分方程式表現および伝達関数

    (2)フィードバック系の安定判別の諸手法

    (3)過渡特性と周波数特性の関係および定常偏差

    (4)周波数応答法による設計手順

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    To learn the basic theory of analysis and design of feedback control.

    Abstract:

    First, the concept of feedback and the configuration of feedback control systems are introduced. Next, the basic items such as differential equation expression, transfer function, frequency transfer function, and stability of systems are learnt. Finally, the concrete methods and procedures for feedback control systems are acquired.

    Goals:

    The followings should be understood, and the analysis and design for feedback control systems should be attained in concrete examples.

    (1) Differential equation expression and transfer function of linear systems

    (2) Methods for stability discrimination of feedback systems

    (3) Relationship among transient response, frequency characteristics and steady state error.

    (4) Design methods with frequency response.

もっと見る…