内容に類似性のあるシラバス

198 件ヒット (0.044秒):

  •   (IMAC-U)燃焼工学 / Combustion Engineering  
      中村 寿, 早川 晃弘, 丸田 薫  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1. 目的

     現代の基幹エネルギー変換プロセスであり、熱と物質の移動、物性値変化、化学反応が同時に起こる複合現象である燃焼現象の理解を深める。

    2. 概要

     燃焼反応機構、層流および乱流予混合燃焼、拡散燃焼、デトネーション、環境負荷物質の生成と抑制など、燃焼の基礎とそのメカニズムを講述する。

    3. 達成目標

     燃焼現象と支配因子を理解することによって、燃焼を予測し制御する技術に関する考え方を習得する。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objectives

    Students learn fundamentals of combustion which is an essential energy conversion process in human society.

    2. Overviews

    Classifications of fuels, relationship between enthalpy of formation of species and flame temperature, and reaction mechanism of combustion are introduced. Then, structures of laminar premixed and non-premixed flames, burning velocity, turbulent flames and detonation are explained. Finally, formation mechanisms of substances by combustion, which have environmental impact, and the methods to reduce these substances are commented.

    3. Goals

    Students will develop the way of thinking to predict and control of combustion by understanding the mechanism of combustion and dominant factors.

  •   燃焼工学 / Combustion Engineering  
      中村 寿, 早川 晃弘, 丸田 薫  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1. 目的

     現代の基幹エネルギー変換プロセスであり、熱と物質の移動、物性値変化、化学反応が同時に起こる複合現象である燃焼現象の理解を深める。

    2. 概要

     燃焼反応機構、層流および乱流予混合燃焼、拡散燃焼、デトネーション、環境負荷物質の生成と抑制など、燃焼の基礎とそのメカニズムを講述する。

    3. 達成目標

     燃焼現象と支配因子を理解することによって、燃焼を予測し制御する技術に関する考え方を習得する。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objectives

    Students learn fundamentals of combustion which is an essential energy conversion process in human society.

    2. Overviews

    Classifications of fuels, relationship between enthalpy of formation of species and flame temperature, and reaction mechanism of combustion are introduced. Then, structures of laminar premixed and non-premixed flames, burning velocity, turbulent flames and detonation are explained. Finally, formation mechanisms of substances by combustion, which have environmental impact, and the methods to reduce these substances are commented.

    3. Goals

    Students will develop the way of thinking to predict and control of combustion by understanding the mechanism of combustion and dominant factors.

  •   熱科学・工学A / Thermal Science and Engineering A  
      徳増 崇, 中村 寿, 早川 晃弘, 丸田 薫  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    熱流体科学における反応性流体の基礎に関する知識を習得することを目的とする。特に、層流燃焼および乱流燃焼における火炎のふるまいと特異現象、化学反応速度論の基礎ならびに電気化学反応現象の熱科学的理解を深める講義を行う。これらを通して、熱流体現象の本質に触れ、工学的応用に結びつけることができる能力を養成する。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    In this course, students will master the fundamentals of reactive flows in thermal fluid science. In particular, the course is designed to cover flame behaviors and peculiar phenomena in laminar and turbulent combustion, the basic concept of chemical kinetics and the understanding of reaction phenomena of electrochemistry on the standpoint of thermal science. Through the class, students will further deepen their understanding of the essence of thermal phenomena and will become able to apply this to practical devices.

  •   エネルギープロセス工学 / Energy Process Engineering  
      青木 秀之  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    エネルギー変換プロセスにおいて生じる汚染物質生成量の減少を検討するために、燃焼の基礎から大気汚染物質制御法を解説する。1) 燃料、2) 燃焼計算、3) 燃焼技術、4) 環境汚染物質の発生機構と対策などについて解説する。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    It is given an outline about air pollution material control method from the basics of combustion. 1) fuel,

    2) stoichiometric calculation, 3) combustion technology, and 4) formation and control mechanism of environmental pollutants, are reviewed.

  •   エネルギー環境論 / Advanced energy and environment  
      川田 達也  
      環境  
       
      後期 月曜日 2講時  

    エネルギー利用の急速な増加に伴う環境負荷の増大は,人類にとって今後数十年間で最も重大な問題のひとつと考えられている。本講義では,環境負荷のより小さいエネルギー利用を実現するために開発が進められている様々なエネルギー変換技術について,熱力学と材料科学をベースに概観し,その将来を展望する。特に,再生可能エネルギーの利用に不可欠な電気化学エネルギー変換について,その原理や最新の技術開発状況について紹介する。

  •   環境システム学Ⅰ / Environmental System I  
      簡 梅芳  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    Google Classroomのクラスコード: ctdjy5t

    地球の成り立ちとその構成要素、地下資源の形成と分布、元素の循環、大気・水環境の化学と主要な環境対策など、地球環境化学の主要トピックスを取り上げる。上記の内容を、化学結合論、分子構造論、熱力学、溶液内化学平衡論など必要不可欠な化学理論を概説し、各トピックスの解説に展開する。この講義を通じ、環境を科学的に捉え、理解する能力が習得できる。また環境問題を解決するための工学的素養が身につく。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    Majority of environmental problems are caused by excessive consumption of fuels and transformation of natural resources accompanying emission of chemical substances to environment. To solve the problems, quantitative understanding of environment is essential. This lecture covers main topics of environmental science including structure and composition of the earth, formation and distribution of underground resources, natural cycles of elements, chemistry of atmosphere and aquatic environmental chemistry.

  •   相変態論 / Theory of Phase Transformations  
      貝沼 亮介, 市坪 哲, 大森 俊洋, 須藤 祐司  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    目的

    相平衡および拡散について理解を深めると同時に、相変態の熱力学的背景を学ぶ。また、実例を通して組織制御や材料設計への利用法について習得する。

    概要と目標

    前半は、主に相の安定性や相平衡について学習し、後半では、界面、拡散、核生成、マルテンサイト変態等に関連する各種相変態の熱力学的背景と原理について学ぶ。

    -自由エネルギー、エントロピー、エンタルピー等を統計熱力学的に理解する。

    -固溶体や化合物の自由エネルギー近似と化学ポテンシャルや相平衡の原理を理解する。

    -界面エネルギーの起源や偏析現象、粒成長現象を理解する。

    -拡散におけるフィックの法則、現象論的方程式、熱力学因子について理解する。

    -凝固や析出について均一核生成や負均一核生成について理解する。

    -マルテンサイト変態の組織的特徴と変態ヒステリシスや変態温度幅の起源を理解する。

    達成方法

    本授業は講義と演習を中心に行う。

    この科目ではClassroomを利用して講義資料と講義情報を発信します。

    Classroomにアクセスし、クラスコードを入力してください。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    Objectives are to promote understanding of the phase equilibria and transformations on basis of thermodynamics and kinetics and to understand some basic concepts on the microstructural control and materials design.

    In the former part, the course provides students with basic knowledge on phase stability and phase equilibrium in materials. In the latter part, the course provides explanations of the thermodynamic origins and principles on phase transformations related to interface, diffusion, nucleation, martensite etc.. The course will be performed with following targets:

    -to understand free energy, entropy and enthalpy in view point of statistical thermodynamics.

    -to understand principle of free energy approximation, chemical potential and phase equilibrium in solid solution and compound.

    -to understand origin of interfacial energy, segregation and grain growth phenomena.

    -to understand Fick's laws, phenomenological diffusion equation and thermodynamic factor etc..

    -to understand the classical theory on homogeneous and inhomogeneous nucleation phenomena.

    -to understand microstructural features of martensitic transformation and origin of transformation hysteresis and width.

    This is a lecture-centered course including exercises.

    This class uses Classroom to provide lecture information.

    Please access Classroom and input the class-code.

  •   地球環境化学 / Geoenvironmental Chemistry  
      井上 千弘  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    地球環境の成り立ち、地下資源の形成と分布、元素の循環、大気・水環境の化学など、環境科学の主要トピックスを取り上げる。まず、化学結合論、分子構造論、熱力学、溶液内化学平衡論など必要不可欠な化学理論を概説し、各トピックスの解説に展開する。この講義を通じ、環境を科学的に捉え、理解する能力が習得できる。また環境問題を解決するための工学的素養が身につく。

    講義方法:本講義は、Google Classroomを利用する場合がある。その場合のクラスコードは「yz6rn4d」である。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    Majority of environmental problems are caused by excessive consumption of fuels and transformation of natural resources accompanying emission of chemical substances to environment. To solve the problems, quantitative understanding of environment is essential. This lecture covers main topics of environmental science including structure and composition of the earth, formation and distribution of underground resources, natural cycles of elements, chemistry of atmosphere and aquatic environmental chemistry.

    In some cases, Google Classroom will be used for this lecture. The class code is "yz6rn4d".

  •   エネルギー工学 / Energy Technology  
      青木 秀之  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    「移動現象論」に引き続き、熱機器や反応器を設計する際に必要となるエネルギー工学の基礎および物質移動の基礎知識を修得する。「移動現象論」と「エネルギー工学」のセットで移動論が完結する。

    2.概要

    工業プロセス内では流体あるいは固体の流れがあり、加熱・冷却される場合が数多い。熱と物質移動の解析によりプロセス設計・操作の最適化を図ることは化学工学の基礎でもある。本授業により熱や物質を扱う機器の原理およびその効率化向上策などを学ぶ。

    3.達成目標等

    この授業では、主に以下のような能力を修得することを目標とする。

    ・化学工業プロセスを高効率で操作するために、熱や物質移動現象を理解し解析できる。

    ・熱伝導方程式の誘導と定常・非定常解の解析ができる。

    ・熱機器の原理を理解し、簡単な設計法を展開できる。

    ・物質移動現象の原理を理解し、その解析ができる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    Following the course, Transport Phenomena, students learn basic heat and mass transfer which are required to design the thermal equipment and reactor. The set of "Transport Phenomena" and this "Energy Engineering" complete the "Rate Processes".

    2. Summary

     Solid and fluid flow is generally used in industrial process with heating and cooling. To optimize the process design and its operation, analysis of heat and mass transfer is required. This course provides students with principle of equipment related with energy and mass transfer, and improvement of the equipment.

    3. Target

    Targets of this course are:

    1) Students understand the phenomena of heat and mass transfer for effective operation of chemical industrial plant.

    2) Students can derive heat conduction equation from Fourier's law, and calculate steady and unsteady heat conduction.

    3) Students understand the principle of thermal equipment and can conduct basic designing of the equipment.

    4) Students understand the principle of mass transfer behavior and calculate mass transport phenomena.

  •   環境分子化学 / Environment-Benign Molecular Design and Synthesis  
      服部 徹太郎, 諸橋 直弥  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    環境に調和した有機合成化学を実現するためには,有害な物質の生成や使用を削減もしくは除去するような化学物質や製造プロセスの創出,設計,応用が求められる。本講義の前半では,光学異性体の合成を例として,分子認識化学と不斉触媒の設計の基礎,環境負荷の低減を目指した代替試剤や反応場の利用などについて概説する。また,後半では,機能性ホスト分子の設計を軸として,環境負荷低減を目指した有機分子捕集材料や金属イオン分離材料の開発について概説する。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    In order to realize environmentally-benign synthetic organic chemistry, it is necessary to create, design, and/or apply chemical substances, as well as production processes, which can reduce the formation or utilization of harmful materials or remove them. In the first half of this course, you will learn the basics of molecular recognition chemistry and the design of catalysts, and utilization of alternative reagents or reaction fields intended to reduce environmental loading, taking syntheses of enantiopure compounds as examples. In the second half, you will learn examples for the development of capturing and separation materials for organic molecules and metal ions based on the design of functional host molecules.

もっと見る…