内容に類似性のあるシラバス

1293 件ヒット (0.018秒):

  •   加速器科学特論 / High intensity beam physics  
      金正 倫計  
      理  
      前期集中  
      前期集中 その他 連講  

    本講義では、原子核・素粒子実験に利用する陽子ビームを如何にして加速器で生成するかについて基礎から解説する。大強度陽子リングのビーム力学の基礎からはじめて、大強度化にむけての取り組みと課題について、J-PARCでの成果を基に紹介する。

    It is explained how to generate proton beams used in nuclear and elementary particle experiments with accelerators in this lecture. Starting with the basics of beam dynamics of the high-intensity proton ring, we will introduce our efforts and issues for high-intensity proton rings based on the results of J-PARC.

  •   非加速器物理学特論 / Non-accelerator Particle Physics  
      石徹白 晃治  
      理  
      後期  
      後期 月曜日 2講時  

    現代の素粒子物理学の研究には2つの方法がある。1つは大強度または高エネルギーの加速器を用いて、高エネルギー状態を調べる方法である。もう一つは、低放射能環境化で極めて稀な現象を通じて素粒子の性質を調べたり、加速器では実現できない高エネルギー状態を作り出す宇宙の天体現象からの信号を調べる非加速器素粒子実験である。本講義では、この非加速器素粒子実験を概説する。

    Modern particle physics research can be carried out in two ways: first, by using high-intensity or high-energy accelerators to investigate high-energy states. The other is non-accelerator particle experiments, which investigate the properties of elementary particles through extremely rare phenomena in low-radioactive environments or by examining signals from astronomical phenomena in the Universe that produce high-energy states that cannot be achieved with accelerators. This lecture will give an overview of these non-accelerator particle experiments.

  •   粒子ビーム科学 / Science and Engineering of Particle Beam  
      寺川 貴樹, 加田 渉, 菊池 洋平, 田代 学, 松山 成男  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    この科目はClassroomを使用して講義情報と講義資料を発信します。

    クラスコードは 2xvqht7 です。

    Classroomにアクセスし、クラスコードを入力してください。

    粒子ビームは理学,工学から医学に至る広範囲な分野で利用されている.粒子ビームの基礎特性,粒子と物質との相互作用などの基礎知識から,その最先端の応用技術までを学ぶと共に,粒子ビームの加速技術,応用する場合の要素機器,およびそれらを使い易くするシステムあるいはビーム制御などについて学ぶ,本講義は,放射線取扱主任者試験の加速器関連分野の知識をカバーする.

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    This course uses Google Classroom to transmit lecture information and lecture materials.

    The class code is 2xvqht7.

    Please access to Classroom and enter the class code.

    Particle beams are used in a wide range of fields, from science and engineering to medicine.

    In this course, you will learn the basic characteristics of particle beams, the interaction between particles and materials, and advanced applications of particle beams. You will also learn the overview of acceleration technology, their subsystems and componets and beam control system.

    This lecture covers the knowledge of the accelerator-related field of the radiation protection supervisor examination.

  •   物質階層融合科学特殊講義BⅢ / Forefront of flavor physics and experimental particle physics using muon  
      理学部非常勤講師  
      理  
      前期集中  
      前期集中 その他 連講  

    この講義では、素粒子標準模型を超える物理法則の必要性と、未知の素粒子物理現象の研究を通して素粒子標準理論がどのように拡張されるべきであるか、特にフレーバー物理の観点から概観します。その一例として、ミューオンに焦点を当て、異常磁気能率(g-2)および電気双極子能率(EDM)の精密計算と精密測定、荷電レプトン数非保存過程の破れの探索などについて基礎的な解説します。最後に、ミューオンを用いた素粒子実験の将来、またその技術の様々な分野への応用可能性について解説します。

    This lecture contains an overview of the need for physical laws that go beyond the standard model of particle physics and how the standard model should be extended through research on new particle physics phenomena, especially from the perspective of flavor physics. As an example, the lecture focuses on muons, and provides basic explanations on precise calculations and measurements of anomalous magnetic moment (g-2) and electric dipole moment (EDM), and the search for violation of charged lepton flavor. Finally, the future prospect of particle experiments using muons and the potential applications of this technology to various fields are discussed.

  •   原子核物理学Ⅰ / Basics of nuclear physics  
      田村 裕和  
      理  
      後期  
      後期 水曜日 2講時  

     原子核を構成する陽子・中性子は、クォークという素粒子から作られた複合粒子であることが分かっている。クォークは単体として陽子・中性子(ハドロン)から取り出すことは出来ないが、ビックバンにより宇宙が開闢した直後には、宇宙はクォークが自由に飛びまわるクォークのガス状態だったと考えられる。宇宙の膨張により温度が下がると、クォークは陽子・中性子の中に閉じ込められ、軽い原子核を作り、電子をまとい原子を形成した。さらに重力によって原子が集まり星が形成されると、星の中でより重い原子核(すなわち重い元素)が合成された。最終的には超新星爆発や中性子星合体によってさらに重い原子核が合成され宇宙にばらまかれ、我々の世界の物質を構成する様々な元素が作られていったと考えられている。これら全ての過程を統一的に理解することは、物質科学の出発点ともいうべき壮大なテーマであり、それこそが、現代の原子核物理学=ハドロンや原子核など強い相互作用に支配されたクォーク多体系の物理学、の使命である。

     本講義では、こうした物質進化の歴史に沿って、クォークからスタートして原子核物理学を概観する。また、どういう実験事実からそれが分かってきたのか、最先端の研究の状況はどうか(例えば、中性子星内部の未知物質を加速器実験で解明しようとする実験など)、といった点にも触れながら講義を行う。

    It is known that the protons and neutrons that compose atomic nuclei are composite particles made of elementary particles called quarks. Although quarks cannot be extracted from protons and neutrons (hadrons) as single particles, it is believed that immediately after the creation of the universe by the Big Bang, the universe was in a quark gas state with quarks flying around freely. As the temperature dropped due to the expansion of the universe, quarks were confined in protons and neutrons, which formed light nuclei and then created atoms by clothing electrons. After that, gravity brought the atoms together to form stars, and heavier nuclei (i.e., heavier elements) were synthesized within the stars. Finally, supernova explosions and neutron star mergers produced even heavier nuclei and dispersed them throughout the universe to create the variety of elements that make up the matter in our present world. Understanding all these processes in a unified manner is a grand theme as the starting point of material science, and this is the mission of modern nuclear physics, i.e., the physics of quark many-body systems such as hadrons and nuclei governed by strong interaction.

      In this lecture, I will give an overview of nuclear physics starting from quarks along the history of matter evolution. The lecture will also touch on what kind of experimental facts have led to this understanding, and the state of the art of research (e.g., accelerator experiments to elucidate unknown matter in neutron stars).

  •   量子ビーム地球科学特殊講義 / Quantum-beam Earth Science and Technology  
      鈴木 昭夫  
      理  
      通年  
      通年 月曜日 5講時  

    地球を含む惑星の形成と進化について、特に量子ビームを活用した実験岩石鉱物学の研究成果について議論する。

    In this course, students who study different fields of the Earth and planetary materials introduce their recent experimental results. This course offers an opportunity to think about the origin, evolution and structure of the Earth and planets.

  •   光物性学特論Ⅰ / Nonlinear and ultrafast material science  
      岩井 伸一郎, 理学部非常勤講師  
      理  
      後期  
      後期 金曜日 2講時  

    光と物質の相互作用において、光の強度が十分に弱い場合、物質の光に対する応答は、光強度には依存しない。太陽光や蛍光灯の下での物質の色や光沢は、このような「線形応答」の枠内で理解できる。しかし、レーザー光のようなの高い電場強度をもつ光に対しては、光電場の二次以上に比例する分極の効果が現れる。本講義では、非線形吸収や高調波発生(第二高調波発生、光整流)などの非線形光学効果の基本的な事項について学習する。さらに、近年のアト秒科学(2023年度ノーベル物理学賞)に至る超短パルスレーザー技術の発展は、光のエネルギーによって物質の温度が上昇する(あるいは熱によって物質は損傷する)遥か以前に、物質に強電場を印加することを可能にした。こうした最先端の光技術によって実現した、”非熱意的な”高エネルギー状態は、物質科学の研究を新たなフェーズに移行させつつある。ここでは、量子物質(超伝導体などの電子の量子効果や量子多体効果が支配する物質)の光・テラヘルツ制御(光誘起相転移、高次高調波発生、光強電場効果)についても紹介する。

    In light-matter interactions, the response of a material to light is independent of light intensity if the light intensity is weak. The color and gloss of materials under the sun can be understood within the framework of such a 'linear response'. However, for light with a high electric field intensity, such as laser light, light-induced polarizations are proportional to more than the second order of the optical electric field. In this lecture, the basic topics of non-linear optical effects such as non-linear absorption and harmonic generation (second harmonic generation, optical rectification) will be studied. Furthermore, recent developments in ultrashort pulsed laser technology leading to attosecond science (Nobel Prize in Physics 2023) have made it possible to apply a strong electric field to materials before the temperature of the matter is increased by the energy of light (or the materials is damaged by heat). These 'non-thermal' high-energy states, made possible by state-of-the-art light technology, are moving materials science research into a new phase. Here, the optical (or terahertz field) control of quantum matter (photoinduced phase transitions, higher harmonic generation and photo-intense electric field effects) in quantum matter (matter dominated by quantum effects of electrons and quantum many-body effects, such as superconductors) will also be presented.

  •   原子核物理学 Nuclear physics  
      伊藤 悟, 加田 渉  
      医  
      工学部の第4クォーター期間 4th quarter at School of Engineering  
      月曜日4限と水曜日2限 4th period class on Monday and 2nd period class on Wednesday  

    本講義では、原子核の性質、原子核の構造、原子核の崩壊、放射線と物質との相互作用を理解するために必要な原子核物理学の基礎を学び、その応用として放射線検出器、粒子加速器、原子力及び核融合の基礎知識を得る。

    In this class, students will learn about the introductory nuclear physics to understand nuclear properties, nuclear structure, nuclear decay and interaction of radiation with matter, and achieve the basic knowledge of radiation detectors and particle accelerators, and nuclear power generation (nuclear fission and fusion) as applications of nuclear physics.

  •   核放射線物理学特論 / Nuclear Radiation Physics  
      伊藤 正俊, 寺川 貴樹  
      理  
      後期  
      後期 月曜日 3講時  

    有限量子多体系である原子核は陽子と中性子で構成され、強い相互作用により様々な性質や構造が現れる。これらは原子核反応や崩壊の測定により実験的に解明されてきた。本講義では核子あたり数MeVから数百MeVのエネルギー領域における原子核反応・散乱実験について解説し、そこから明らかにされてきた原子核構造や集団運動状態について、最近のトピックスを織り交ぜて紹介する。

    The nucleus, which is a finite quantum many-body system, is composed of protons and neutrons and have various properties and structures due to the strong interaction. These have been elucidated experimentally by observing the nuclear reaction and decay. Students will learn knowledge and experimental techniques of nuclear reaction and scattering experiments in the energy region from several MeV to several hundred MeV per nucleon. The experimental studies of nuclear structure and collective motion including recent works are introduced.

  •   社会環境工学実験 / Experiments in Civil and Environmental Engineering  
      覃 宇, 大石 若菜, 何 昕昊, SUPPASRI ANAWAT, 佐藤 翔輔, JANAKA BAMUNAWAL, 辻 勲平, 内藤 英樹, 野村 宗弘, 皆川 浩, S.O.A.D.MIHIRA L, 宮本 慎太郎  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的:社会環境工学を学ぶにあたり必要な基礎的知識を体得するため,基本的な物理学に関する知識も加え理解を深めながら,コンクリートや土質・構造・水理・水質に関する実験を行う.

    2.概要:コンクリート実験では配合設計を行い,実際にコンクリートを製造し,各種試験によりその品質を確認する.土質実験では物理試験,透水試験,力学試験などを行い,土の工学的性質及びその力学挙動を理解する.構造実験では単純梁の3点載荷実験を行い,たわみの分布や断面内のひずみの分布を測定し,理論解との比較を行う.これにより,固体力学に関する知識を得る.また,鋼材の引張試験とRC梁の曲げ載荷実験を行い,鉄筋コンクリート部材の基本的特性を学習する.水理実験では基本的な流れを実験室内で再現し,その力学諸量を測定する.流体力学に関する基本諸量や運動の基礎を理解する.水質実験では水質指標等の変化過程を測定する.

    3.達成目標等:これらの実験を通し,コンクリートや土といった社会基盤構成材料の基本的性質とその取り扱い方,構造物の変形挙動および実験データと一般的なモデル解との差異,水の基本的な流れ,基本的な水質支配機構とその取り扱い方について理解することを目標とする.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose: To gain basic knowledge necessary for learning civil and environmental engineering, this class is to help students conduct experiments on concrete, soil, structure, hydraulics and water quality while deepening understanding knowledge about basic physics.

    2. Summary: In the concrete experiments, the students conduct mix proportion design, actually produce concrete, and confirm its quality and performance by various tests. In the soil experiments, physical tests, permeability tests, compression tests, etc. are carried out to understand the engineering properties of soil and its mechanical behavior. In the structural experiments, a three-point loading experiment of simple beams is carried out to understand the deflection distribution and the strain distribution in the cross section. In addition, the students compare the measuring results with the theoretical solution. Moreover, tensile tests of steel rods and bending load tests of RC beams are conducted to learn basic properties of reinforced concrete members.

    In hydraulic experiments, the basic flow is reproduced in the laboratory and its mechanical quantities are measured in order to understand basic mechanical quantities and movement concerning fluid mechanics. In water quality experiments, the students measure the process of change of water quality index etc.

    3. Achievement goal, etc.: Through these experiments, the students understand the fundamental properties of civil engineering materials such as concrete and soil, the deformation behavior of structures, the difference between experimental data and theoretical model solutions, flow of water, basic water quality control mechanism.

もっと見る…