内容に類似性のあるシラバス

426 件ヒット (0.022秒):

  •   統計物理学Ⅲ / Introduction to thermodynamics and statistical mechanics of phase transition and non-equilibrium systems  
      横山 寿敏  
      理  
      前期  
      前期 金曜日 2講時  

    統計物理学I, IIでは、多数の相互作用がない(或いは弱い)粒子系が、平衡状態にある場合の概念やそれを扱う原理的処方を主に学んだ。ここでは、相互作用の導入により起こる相転移(自発的対称性の破れ)や臨界現象、および摂動によって平衡系からずれた系のふるまい(応答)を理解するための基礎的な知識および方法を習得する。また、これらを扱うために必要な場の量子論の基礎を始めに話す。

    In this course, I will talk about elementary concepts and methods for studying phase transitions (spontaneous symmetry breaking) and critical phenomena, which arise on account of inter-particle interactions, and non-equilibrium systems (mainly linear response theory). In the beginning, I will introduce non-relativistic quantum field theory to deal with the above subjects.

  •   統計物理学Ⅱ / Quantum Statistical Physics and Basis of Statistical Physics of Phase Transitions  
      那須 譲治  
      理  
      後期  
      後期 木曜日 2講時  

    統計物理学Iで学んだ概念をもとに、量子系を対象とした量子統計力学と相互作用のある系の相転移現象の統計力学の基礎について解説する。具体例として、理想量子気体、フェルミ統計とボーズ統計、格子振動と電磁場の統計力学、相互作用系の共同現象と相転移などについて、それらの性質と取り扱いについて学ぶ。

    Based on the concepts learned in Statistical Physics I, we study statistical physics on quantum systems and basis of statistical treatments of phase transitions. Several examples are chose from ideal quantum gases, Fermi-Dirac and Bose-Einstein statistics, elementary excitations of lattice vibration and electromagnetic field, cooperative phenomena in interacting particle/spin systems.

  •   熱学・統計力学B / Thermodynamics and Statistical Mechanics B  
      金井 駿  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    授業はBCPレベルが許す限り対面で行う。連絡にはGoogle Classroomを利用

    1.目的

      熱・統計力学は電磁気学、量子力学と並び物性物理学の基礎となるものである。熱・統計力学Bでは電気・情報系の学生が取り扱う物質の性質を理解する理論的基礎を学び、その応用力を身につける。

    2.概要

      平衡状態の熱力学と統計物理学を講義する。統計物理学の物性物理学における応用等について学ぶ。

    3.達成目標等

      量子統計力学であるフェルミ統計、ボ-ズ統計を理解してその応用力を身につける。相転移と分子場理論を理解してその応用力を身につける。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    Classes will be conducted face-to-face manner as BCP levels allow. Google Classroom will be used for communication.

    1. Object

    Thermal/statistical physics is an essential subject, along with electromagnetism and quantum mechanics, to understand solid-state physics. In this course, students will learn from the fundamentals of statistical physics to their application.

    2. Summary of class

    This course gives an elemental account of thermal physics in equilibrium states. Students will study the application of statistical mechanics to condensed matters.

    3. Goal of the study

    Students will understand the basics and applications of quantum statistical mechanics based on Fermi and Bose distribution functions and phase transition with a concept of the mean-field approximation.

  •   応用物理化学 / Applied Physical Chemistry  
      浅井 圭介  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    量子論に基づいた物質の取り扱い方を受講者に習得させることを目的とする.まずは,量子論や古典力学などにおけるミクロ系の理論と,熱力学をはじめとするマクロ系の理論とを仲立ちする,統計力学についての理解を深化させる.その後,量子論と統計力学とを駆使し,物質中での各種の量子論的現象を,実験・観測手法と関連付けながら論じ,各種の分析・分光技術の量子論的基礎の構築へと進む.なお,本講義は,第四セメスターの「応用量子化学」で講じられる程度の量子論に関する知識を受講者が既得であることを前提とする.

    2.概要

    受講者は,ミクロ系の記述とマクロ系の記述との仲立ちをする統計力学の理解を深め,ミクロ系の理論に基づいて,実際のマクロな物質系の物理量を導出するための方途を習得する.また,物質についての各種分析・分光の基礎となる量子論的概念を把握する.

    3.達成目標等

    ・熱力学的諸量の分子論的理解とその実践的的適用.

    ・分配関数の自在な運用.

    ・物性評価手法の理解.

    ・種々の化学系への量子論の適用.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    In this course, students will study quantum theory of matter. Initially, students will be introduced to statistical mechanics, which bridges the theories of thermodynamics at the macroscopic (classical theory) and microscopic (quantum theory) levels. Subsequently, students will learn about quantum mechanical phenomena of matter in terms of quantum theory and statistical mechanics. Students will investigate the basic quantum theory through analytical and spectroscopic methods in both a practical and theoretical sense.

  •   材料統計力学 / Statistical Mechanics for Materials Scientists  
      市坪 哲  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    授業の到達目標及びテーマ

    材料科学における熱力学の初歩(熱力学関数の導出)から統計熱力学の基礎(分配関数の計算や自由エネルギー計算)を学び,諸問題が解けるようになることが目標

    授業の概要

    物理や化学の様々な現象に深い関わりをもつ熱・統計力学の基本的な考え方を説明し,物質科学において果たす役割,適用例について述べる.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    The goal is to learn the rudiments of thermodynamics in materials science (derivation of thermodynamic functions) and the basics of statistical thermodynamics (calculation of distribution functions and free energy), and to be able to solve various problems.

    The basic concepts of thermal statistical mechanics, which are deeply related to various phenomena in physics and chemistry, will be explained, and its role and applications in materials science will be described.

  •   熱・統計力学基礎 / Thermodynamics and Statistical Mechanic  
      白井 正文  
      工  
       
       

    体系の構成要素に関する微視的な規則から、それとは本質的に異なる巨視的な性質を導く手法を与える統計力学の基礎を統一的に理解することを目的として、電子・磁気材料の示す様々な物性との関連について学習する。まず、電子集団や分子集団のように多くの構成要素からなる体系の巨視的性質を導くための平衡状態の統計力学を修得する。次に、電気伝導などの現象の理解に不可欠な非平衡系の統計力学の基礎を学習する。

    This course aims to help students understand the fundamentals of statistical mechanics, which derives macroscopic properties of a system from microscopic laws of constituent elements in the system. Students will learn about the relation to various properties of electronic and magnetic materials. First, students will understand statistical mechanics for systems in equilibrium. Then, students will learn about non-equilibrium statistical mechanics which is indispensable to understand transport properties.

  •   物理学C  
      川勝 年洋  
      理(物2組)  
      3セメスター  
      前期 火曜日 3講時 川北キャンパスB101  

    熱力学とは、マクロ(巨視的)な系の示す熱の関与する物理現象の特性を明らかにする学問である。本講義では、経験法則から導き出された少数の熱力学の基本法則を基礎として熱力学の理論体系を構築する手法に関して学び、かつ具体的な事例を用いて熱力学に応用方法を学習する。

    Thermodynamics describes thermal properties of macroscopic systems. In this lecture, we learn how to establish theoretical framework of thermodynamics based on a few principles(laws of thermodynamics), which are derived empirically. Several examples are also presented to help the students to understand its applications.

  •   光物性学特論Ⅰ / Nonlinear and ultrafast material science  
      岩井 伸一郎, 理学部非常勤講師  
      理  
      後期  
      後期 金曜日 2講時  

    光と物質の相互作用において、光の強度が十分に弱い場合、物質の光に対する応答は、光強度には依存しない。太陽光や蛍光灯の下での物質の色や光沢は、このような「線形応答」の枠内で理解できる。しかし、レーザー光のようなの高い電場強度をもつ光に対しては、光電場の二次以上に比例する分極の効果が現れる。本講義では、非線形吸収や高調波発生(第二高調波発生、光整流)などの非線形光学効果の基本的な事項について学習する。さらに、近年のアト秒科学(2023年度ノーベル物理学賞)に至る超短パルスレーザー技術の発展は、光のエネルギーによって物質の温度が上昇する(あるいは熱によって物質は損傷する)遥か以前に、物質に強電場を印加することを可能にした。こうした最先端の光技術によって実現した、”非熱意的な”高エネルギー状態は、物質科学の研究を新たなフェーズに移行させつつある。ここでは、量子物質(超伝導体などの電子の量子効果や量子多体効果が支配する物質)の光・テラヘルツ制御(光誘起相転移、高次高調波発生、光強電場効果)についても紹介する。

    In light-matter interactions, the response of a material to light is independent of light intensity if the light intensity is weak. The color and gloss of materials under the sun can be understood within the framework of such a 'linear response'. However, for light with a high electric field intensity, such as laser light, light-induced polarizations are proportional to more than the second order of the optical electric field. In this lecture, the basic topics of non-linear optical effects such as non-linear absorption and harmonic generation (second harmonic generation, optical rectification) will be studied. Furthermore, recent developments in ultrashort pulsed laser technology leading to attosecond science (Nobel Prize in Physics 2023) have made it possible to apply a strong electric field to materials before the temperature of the matter is increased by the energy of light (or the materials is damaged by heat). These 'non-thermal' high-energy states, made possible by state-of-the-art light technology, are moving materials science research into a new phase. Here, the optical (or terahertz field) control of quantum matter (photoinduced phase transitions, higher harmonic generation and photo-intense electric field effects) in quantum matter (matter dominated by quantum effects of electrons and quantum many-body effects, such as superconductors) will also be presented.

  •   物理学C  
      松井 広志  
      理(物3組)  
      3セメスター  
      前期 火曜日 3講時 川北キャンパスB102  

    熱力学は、我々の身の回りで起きるいろいろな熱現象(融解、蒸発、車のエンジン、生命活動に必要なエネルギーなど)、および熱的な性質を巨視的に扱う学問である。熱力学では、こうした熱過程を、熱平衡状態にある始状態と終状態で抑え、その差で説明する。本授業の前半では、熱力学の基本法則、エントロピーと熱力学関数を理解して、代表的な熱機関を取り上げ、熱現象の物理的な意味を考える。後半では、相平衡、非理想気体、および気体分子運動論など、熱力学的な現象を捉える上で必要な概念を習得する。最後に、古典統計力学に少し足を踏み入れる。本講義を通じて、我々の身のまわりで起きる熱現象が理解できるようになる。

    Thermodynamics macroscopically deals with various thermal phenomena and properties like a melting and evaporation of water, engines of vehicles, and energies for vital activities. Thermal processes are described with the difference between initial and final thermal equilibrium states. In this course, students will learn and deepen their understanding of physical meaning on lows of thermodynamics, entropy, thermodynamical functions, phase equilibrium, non-ideal gas, molecular kinetic theory of gases, and additionally classical statistical mechanics.

  •   統計力学B / Statistical Mechanics B  
      吉留 崇  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    統計力学Aで学んだ事柄を基に、量子理想気体のボーズアインシュタイン凝縮や磁性体相転移をミクロな原子・分子の協力現象として理解する。

    2.概要及び達成目標

    グランドカノニカル分布について学び、量子理想気体のフェルミ気体とボーズ気体に応用する。その後、磁性体相転移のモデルであるイジングモデルについて学ぶ。

    授業は対面で行うが、Google Classroomを併用する。クラスコードは講義の最初に示す。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    The aim of Statistical mechanics B is to understand Bose-Einstein condensation and phase transition in magnetic materials as cooperative phenomena of many microscopic atoms and molecules. To achieve the aim, grand-canonical distribution is introduced and applied to quantum ideal gas (Fermi gas and Bose gas). Finally, Ising model is introduced to learn phase transition in magnetic materials.

もっと見る…