内容に類似性のあるシラバス

304 件ヒット (0.029秒):

  •   移動現象論 / Transport Phenomena  
      渡邉 則昭, 上髙原 理暢  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    この科目ではGoogle Classroomを使用して講義資料と講義情報を発信することがあります。

    Google Classroomのクラスにアクセスできるようにしておいてください。

    1. 目的

    運動量,熱および物質の移動(総称:移動現象)に関する基礎知識修得を目的とする。

    2. 概要

    移動現象の共通法則,次元解析と無次元相関式,収支式(微分方程式)の立て方および収支式の解き方などについて例を用いて述べる。

    3. 達成目標等

    ・移動現象の役割を理解する。

    ・移動現象間の類似性を理解する。

    ・異相間移動速度の式と次元解析による無次元相関式の導出法を理解する。

    ・収支式の立て方と微分方程式の基礎的解法を理解する。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    In this subject, lecture materials and lecture information may be sent using Google Classroom.

    Prepare accessing Google Classroom.

    1. Object

    Students will understand fundamentals of the momentum, heat and mass transport phenomena.

    2. Summary of Class

    This course describes the common laws among transport phenomena, dimension analysis and relationships among dimensionless numbers, the ways to derive and solve equations of balance (differential equations) and so on by using examples.

    3. Goal of Study

    · Understand the important roles of transport phenomena.

    · Understand the similarity among transport phenomena.

    · Understand the ways to derive the equations for the rates of transport phenomena, and relationships among dimensionless numbers through the dimension analysis.

    · Understand the ways to derive and solve the differential equations of balance.

  •   移動現象論 / Transport Phenomena  
      大森 俊洋  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    本授業は対面で火曜日2講時に行う。授業情報の提供は Google Classroom も使用する。

    1.目的

    材料製造プロセスにおいて重要な運動量、熱および物質の移動(総称:移動現象)に関する基礎知識修得を目的とする。

    2.概要

    移動現象の共通法則、次元解析と無次元相関式、収支式(微分方程式)の立て方、収支式の解き方等について、簡単な材料製造プロセスの例を用いて述べる。

    3.達成目標等

    この講義では、主に以下のような能力を修得することを目標とする。

    ・本系の学習・教育目標のA, B, Dに関する能力を修得する。

      記号A-Mについては、マテリアル・開発系の教育目標を参照のこと。

      https://www.material.tohoku.ac.jp/department/purpose.html

    ・ 材料製造プロセスにおける移動現象の役割を理解する。

    ・ 移動現象間の類似性を分子運動の見地から理解する。

    ・ 異相間移動速度の定式と次元解析による無次元相関式の導出法を理解する。

    ・ 収支式の立て方と微分方程式の基礎的解法を理解する。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    In this course, lectures will given in a lecture room on Tuesday from 10:30 to 12:00. The class information will be provided via Google Classroom. To access the Classroom, please check the website (https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1. Goals

    The main goal of this course is to let students acquire basic knowledge about transport phenomena in materials processing. Transport phenomena include fluid flow, heat and mass transfer.

    2.Outline

    General laws of transport phenomena, dimensional analysis and dimensionless correlation equations, derivation of balance differential equations and methods of their solution will be described using material manufacturing processes as examples.

    3. Achievement target, etc.

     ・The objective of this class is to acquire the following skills and abilities.

     ・The role of transport phenomena in the material processing.

    ・ The similarity between transport phenomena from the viewpoint of molecular motion.

    ・ The main relationships for the transfer rate between different phases and derivation of the dimensionless

       correlation equations using the dimension analysis.

    ・ Formulation of the balance equations and the basic solutions of differential equations.

  •   化学工学基礎 / Basic Chemical Engineering  
      長尾 大輔, 福島 康裕  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    化学プロセス・化学装置には種々あるが、それらを設計する際の基礎となる物質・エネルギーの収支(保存・移動)、物質変化(反応)に関する基礎知識修得を目的とする。

    2.概要

    種々のプロセスを対象として、化学工学熱力学、物質収支、エネルギー収支の概念、導出法を学ぶ。

    3.達成目標等

    この授業では主として以下のような能力を習得することを目標とする。

    ・与えられた条件で簡単なプロセスについて、相平衡、化学変化、物質移動について理解することができる。

    ・それを収支式として定式化でき、それを解して未知変数を求めることができる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    This course covers basic chemical engineering to understand mass and energy balances including their conservation and transportation with and without chemical reactions. Based on chemical engineering thermodynamics, students will learn the concept of mass and energy balances and the approaches to derivation of their balance equations for a variety of chemical engineering processes. The course is designed to understand phase equilibrium, chemical change and mass transportation under given conditions for simple processes. Formulation of the balance equations to acquire unknown parameter in the processes will be learned in the course.

  •   数理流体力学 / Mathematical Fluid Dynamics  
      江原 真司, 橋爪 秀利  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    本講義ではGoogle Classroomを使用して講義情報を発信します(クラスコード: nwihw6n)。

    1.目的

    先進核分裂炉、核融合炉、粒子加速器などの量子エネルギーシステムにおける熱設計の基礎となる伝熱学・流体力学およびそれらの応用としての数値解析手法を学ぶことを目的とする。

    2.概要

    伝熱学については、伝熱の基本形態である伝導・対流について、物理現象の定式化と解法を交えて学ぶ。流体力学については、理想流体の複素解析、粘性流体の運動・境界層について学ぶ。また、両者に共通する次元解析および現象を支配する無次元数について学ぶ。また、テンソル解析の基礎を理解し、粘性による応力とひずみ速度の関係を学び、ナビアストークスの式を導出する。

    3.到達目標

    伝熱学の基礎を理解すること、および支配方程式の導出過程・取扱いを習熟すること

    流体力学の基礎方程式の数理的な取扱いを習熟し、粘性流体の流動現象の特徴とその数学的な記述を理解すること

    次元解析による無次元相関式の導出法を理解すること

    テンソル解析の基礎を理解し、ナビアストークスの方程式の各項の意味を理解すること

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    In this class, lecture information will be sent via Google Classroom (class code: nwihw6n).

    1. Objectives

    The purpose of this class is to provide students with an understanding of heat transfer science and fluid dynamics, which are the basis of the design of thermal engineering system such as advanced nuclear fission reactors, nuclear fusion reactors and particle accelerators, and of numerical analysis method as their applications.

    2. Outline

    In this class, students will learn how to formulate and solve the physical phenomena of heat conduction, convection, which are the basic mechanism of heat transfer, as regards heat transfer science. Regarding fluid mechanics, students will learn complex analysis of ideal fluid and motion of viscous fluid including boundary layer, as well as dimensionless numbers that govern the phenomena. In addition, students will understand the basics of tensor analysis, learn the relationship between viscous stress and strain rate, and derive the Navier-Stokes equation.

    3. Goal

    To understand the fundamentals of heat transfer and to acquire the academic skills to derive and handle the governing equations.

    To understand mathematical aspects of basic equations in fluid mechanics, and characteristic features and mathematical expressions of viscous fluid motions.

    To understand the way to derive relationships among dimensionless numbers through the dimension analysis

    To understand the basics of tensor analysis and understand the meaning of each term in the Navier-Stokes equation.

  •   移動現象論 / Transport Phenomena  
      青木 秀之, 渡邉 賢  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    各種工業プロセス内では運動量移動、熱移動、物質移動、化学反応による変化過程などが複雑に絡み合い、それらを一括して移動現象と称する。この授業では、移動現象論の最も基礎である運動量ならびに熱(エネルギー)移動についての専門基礎知識を学ぶ。

    2.概要

    工業プロセス内では流体あるいは固体の流れがあり、加熱・冷却される場合が数多い。熱と物質移動の解析によりプロセス設計・操作の最適化を図ることは化学工学の基礎でもある。移動現象論を通して化学工学の必要性と意義,流体力学の基礎、流体輸送機器の取り扱いなどを学ぶ。

    3.達成目標等

    この授業では、主に以下のような能力を修得することを目標とする。

    ・熱及び物質収支の取り方を理解し、プロセスの定量的把握手法を修得する。

    ・粘性流体の性質と運動量方程式の立て方を理解する。

    ・エネルギー保存式からベルヌーイの式を誘導し、その応用を図ることができる。

    ・種々の流動抵抗をベルヌーイの式に組み込み、ポンプ動力を解析できる。

    ・ポンプやブロワーなどの流体輸送機器の原理を理解し、その特徴を説明できる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    Momentum, heat and mass transfer and chemical reactions simultaneously occur in the process of chemical industries and these are collectively called Transport Phenomena. This course provides students with fundamental knowledge of transport phenomena, such as momentum and heat (energy) transfer.

    2. Summary

    Solid and fluid flow is generally used in industrial process with heating and cooling. To optimize the process design and its operation, analysis of heat and mass transfer is required. Students understand necessity and significance of chemical engineering, basic fluid dynamics and fluid machines through this course.

    3. Target

    Targets of this course are:

    1) Students learn the calculation method of heat balance and material balance, and these quantitative balance in an objective process.

    2) Students understand the characteristics of viscous fluid and the derivation method of momentum equation of fluid.

    3) Students derive Bernoulli's equation from the law of conservation equation of energy, and they can apply Bernoulli's equation to industrial problems.

    4) Students can calculate pump power by considering various fluid mechanical loss.

    5) Students understand the mechanism of fluid machines such as pump and blower and explain these characteristics.

  •   数値材料プロセス学 / Numerical Methods for Materials Processing  
      埜上 洋, 夏井 俊悟  
      工  
       
       

    1.目的

    材料プロセス内で発生する物理現象を支配する基礎方程式の基礎とそれらを数値解析する手法について学ぶ。また、それらの具体的な材料プロセスへの応用事例について学ぶ。

    2.概要

    材料プロセス内で発生する物理現象を支配する基礎方程式は、各種保存則と構成方程式から得ることができる。最終的にこれらの基礎式は、積分形と微分形にまとめることができ、それらは数値的に解くことができる。代表的な数値解析方法について学ぶ。また、これらの手法は様々な材料プロセス問題の解明に有効であることを多くの事例を通じて学ぶ。

    この科目の実施形態は、講義室の講義を想定していますが、状況によりオンライン配信を利用する場合があります。講義情報と講義資料は Google Classroom を通じて発信します。Google Classroomのクラスコードを工学研究科Webページにて確認し登録すること。

    大学院シラバス・時間割・履修登録

    (https://www.eng.tohoku.ac.jp/edu/syllabus-g.html)

    1. Purpose

    Learn basic equations of physics that appear in the material processing phenomena and numerical analysis methods for solving the equations. And more, learn about the application of the methods to the actual materials processing problems.

    2. Outline

    Basic equations of physics that appear in the material processing phenomena can be obtained from dominant conservation laws and constitutive equations. Finally, basic equations can be reduced to differential or integral forms that can be solved numerically. Learn about typical numerical methods that can be available to solve the basic equations. And more, learn about the versatility of these numerical methods through the applications to actual materials processing.

    This lecture will be given in an actual classroom. The lecture style, however, will be changed if necessary. Information and documents about this lecture will be distributed through "Google Classroom". Check the class code for Google Classroom at School of Engineering Website and register for this class.

    Timetable & Course Description

    (https://www.eng.tohoku.ac.jp/english/academics/master.html)

  •   伝熱・流体の力学 / Heat Transfer and Mechanics of Fluid  
      及川 勝成  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    もの作りの基本は材料に熱や力を加えて形や特性を制御することであり,材料内部の温度場や加えられた力と変形・流動の関係を知ることが重要である.本講では,工学全般に現れる伝熱現象およびその数学的取り扱いについて学ぶ.また,流体の運動について,工学的に有用な数学モデルを紹介し,対流問題などに対する応用について学ぶ.

    2.概要

    工学問題に現れる伝熱現象をマクロな立場からモデル化する手法ならびに基礎方程式の導出方法を学び,伝熱現象を定性的ならびに定量的に評価するための厳密解ならびに近似解法について,具体的な工学問題を例に解説する.また,対流熱伝達との関連を中心に,流体力学の基礎についても講義する.

    3.達成目標等  (この授業を通して以下の能力を修得することを目標とする)

    ・ 本学科の学習・教育目標のA、B、C、Kに関する能力を含めて修得する.

    ・ 伝熱現象ならびにマクロな立場からの伝熱現象のモデル化手法を理解する.

    ・ 流体力学の基礎について理解する.

    ・ 伝熱・流れの問題に対する厳密解および近似解法について理解し応用できる能力を養う.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    The basis of manufacturing is to control the shape and characteristics by applying heat and force to the row material, and it is important to know the temperature field inside the material and the relationship between the applied force and deformation / flow.

    In this course, we focus on heat transfer phenomena appearing in engineering and their mathematical process. In addition, we introduce some mathematical models of fluid motion such as convection problems.

    2. Outiline

    Learn how to model heat transfer phenomena appearing in engineering problems from a macroscopic aspects and how to derive basic equations. Exact solutions and approximate solutions for qualitatively and quantitatively evaluating heat transfer phenomena in engineering are expound. In addition, learn the basics of fluid mechanics, focusing on convective heat transfer.

    3. Outcomes

    Understand heat transfer phenomena and modeling methods of heat transfer phenomena from a macroscopic aspect.

    Understand the basics of fluid mechanics.

    Develop the ability to understand and apply exact and approximate solutions to heat transfer and flow problems.

    This course includes the our program outcomes of A, B, C, K

  •   伝熱学 / Heat Transfer  
      小原 拓  
      工  
       
       

    Google Classroomのクラスコードは i5cth6x です。2024年度は対面(機1)で授業を行いますが、資料の配布にClassroomを使います。

    1. 目的 

    機械工学、化学工学、電気・電子工学、環境工学等の工学分野において熱エネルギー機器設計の基礎となる、伝熱学の理解を目的とする。温度差を伴う熱エネルギーの移動現象を対象にして、形態の異なる各伝熱メカニズムの基礎式とその数理解法、工業機器への応用事例を、具体的な演習を含めて修得する。

    2. 概要 

    伝熱の基本三形態である熱伝導、対流、放射について、物理現象の定式化と解法、現象を支配する無次元数について学ぶ。さらに、加熱・冷却機器、空調機器、熱交換器など実用的な工学機器設計への応用手法について修得する。

    3. 達成目標等 

    伝熱学の基礎を理解し、工業、工学分野における熱エネルギー機器の最適設計のための学力を修得する。

    The class code of Google Classroom is i5cth6x. This Classroom is utilized to distribute the handout.

    1. Objectives 

    The purpose of this class is to provide students with an understanding of heat transfer science, which is the basis for the design of thermal energy equipment and devices in engineering fields such as mechanical engineering, chemical engineering, electrical and electronic engineering, and environmental engineering. Students will learn the basic equations of the heat transfer mechanisms driven by a temperature difference. They will also learn how to solve the equations mathematically and how to apply the equations to industrial equipment, including specific exercises.

    2. Outline 

    In this class, students will learn how to formulate and solve the physical phenomena of heat conduction, convection, and radiation, which are the three basic forms of heat transfer, as well as the dimensionless numbers that govern the phenomena. In addition, students will learn how to apply them to the design of practical engineering equipments such as heating and cooling equipment, air conditioning equipment, and heat exchangers.

    3. Objectives 

    To understand the fundamentals of heat transfer and to acquire the academic skills to optimize the design of thermal energy devices in industry and engineering.

  •   応用数学B / Applied Mathematics B  
      清水 幸弘  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認できます。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

     ラプラス変換,特殊関数,2階線形偏微分方程式について理解して,計算力を身につける.また,この科目を応用物理学のさまざまな分野に応用するための基礎を習得する.

    2.概要

     工学に現れる現象の解明に重要な役割をはたす応用数学の一部であるラプラス変換,2階線形微分方程式について,また工学に応用される特殊関数のうち,特にガンマ関数,ルジャンドル関数について,それらの基礎を学習する。

    3.達成目標等

    (1) ラプラス変換とその逆変換を理解し,計算ができるようになる.また,それらを微分方程式と積分方程式の解法に応用できる.

    (2) ガンマ関数,ルジャンドル関数の定義や公式の導出を理解して,これらの特殊関数を使うことができる.

    (3) 2階線形偏微分方程式の解法を学び,境界条件を満たす解を求めることができる.

    講義は対面形式で実施する.お知らせなどにGoogle Classroom(クラスコード: 6jtatb4)を用いる.

    Google Classroom class codes can be found on the School of Engineering website at https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html

    1. Objective

    To understand Laplace transforms, special functions, and second-order linear partial differential equations, and to acquire calculation skills. To acquire the basis for applying this subject to various fields of applied physics.

    2. Outline

    Students learn the basics of Laplace transform and second-order linear differential equations, which are a part of applied mathematics that play an important role in elucidating phenomena that appear in engineering, as well as special functions applied to engineering, especially gamma function and Legendre function.

    3. Objectives

    (1) To understand Laplace transform and its inverse transform, and to be able to calculate them. Students will also be able to apply them to the solution of differential and integral equations.

    (2) Understand the definitions and derivation of the formulas for the the gamma function and the Legendre function, and be able to use these special functions.

    (3) Learn how to solve second-order linear partial differential equations and find solutions that satisfy the boundary conditions.

    Lectures will be given in a face-to-face format. Google Classroom (class code: 6jtatb4) will be used for announcements, etc.

  •   分離工学Ⅱ / Separations Engineering II  
      渡邉 賢, 大田 昌樹  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    化学プロセスにおける分離を目的とする単位操作の中で、平衡論に加えて物質移動速度が関与する操作について、その現象の理解と、操作設計のための知識修得を目標とする。

    2.概要

    吸収、機械的分離、膜分離、攪拌について化学工学熱力学、物質収支、エネルギー収支の概念、導出法を講義するとともに、その例題を示して理解を深める。

    3.達成目標等

    この授業では、主に以下のような能力を修得することを目標とする。

    ・吸収、機械的分離、膜分離、攪拌操作の原理を理解し、説明することができる。

    ・上記操作について、相平衡と物質移動を加味したモデルを作り、その基礎式が導出できる。

    ・モデルを解き、操作の最適化ができる。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    In chemical processes, mass transfer in unit operations is fundmental to separation methods in addition to equilibrium theory. The objective of this course is to provide students with an understanding of the mass transfer that occurs in unit operations such as gas absorption. Other unit operations are considered including agitation, solid-liquid separations and membranes. This course supplements student skills obtained in Separations I (distillation).

    2. Overview

    Absorption, mechanical separation, membrane separation, chemical engineering thermodynamics for agitation, mass balance, the concept of energy balance, as well as lecture for derivation of key equations by example.

    3. Goals

    In this course, the goal is to educate students in a core of principles so that they can develop necessary fundamental skills needed to design or assess absorption, mechanical and membrane separation methods and to understand basic principles of designing vessels for agitation.

もっと見る…