内容に類似性のあるシラバス

114 件ヒット (0.032秒):

  •   結晶物理学特論 / Science of magnetoelectric correlation in magnets  
      小野瀬 佳文, 新居 陽一  
      理  
      後期  
      後期 火曜日 3講時  

    古典的電磁気学によると、磁束の変化によって電場が生じるファラデーの法則や電場の変化によって磁場が生じるアンペールマクスウェルの法則といった形で電気と磁気の相関が生じる。しかしながら、物質中では電気の源は電子が持つ電荷で磁性は電子のスピンによって担われており両者はより強く結びついている。特に、磁性体中での電子は対称性の破れやトポロジーの効果などが働くと、電気と磁気が相関した非自明な応答がしばしば発現する。この授業では、磁性誘電体における電気磁気相関や遍歴磁性体におけるトポロジカルホール効果、電流誘起磁気トルク、弾性波伝搬におけるトポロジーや対称性の破れの効果などを学び、磁性体における電気磁気相関の現代的理解を習得することを目指す。

    According to classical electromagnetism, an electric field is induced by the change of magnetic flux (Faraday law), and a magnetic field emerges owing to a change of electric fields (Maxwell-Ampere law). In materials, electricity and magnetism are dominated by, respectively, the charge and spin of electrons, which are therefore closely coupled to each other. In particular, in magnets, nontrivial electromagnetic responses are frequently emergent due to the effect of topology and/or symmetry breakdown. In this class, we study magnetoelectric correlation in magnetic dielectrics, and topological Hall effect and spin-transfer torque in itinerant magnets, effects of topology/symmetry-breaking on elastic wave, and so on in order to acquire the contemporary understanding of magnetoelectric correlation in magnets.

  •   スピン機能素子 / Spintronics Devices  
      深見 俊輔, 池田 正二, 大塚 朋廣, 金井 駿  
      工  
       
       

    Google Classroomのクラスコードは工学研究科Webページ

    https://www.eng.tohoku.ac.jp/edu/syllabus-g.html

    (大学院シラバス・時間割・履修登録)にて確認すること。

    1. 目的

     本講義では、電子の電荷とスピン、及びそれらの状態の量子性を制御する素子を扱う。特に、学部教育に於いて学んだ物理(電磁気学、量子力学)にもとづき、電荷とスピンの二つの自由度を活用するスピン機能素子の動作原理とその応用について学ぶ。加えて、電子や光の量子状態を制御する量子機能素子とその応用を理解するために必要な基礎過程を学ぶ。これらの素子を実例に、次世代集積回路や量子コンピュータへの応用に向けた知識を習得する。

    2. 概要

     半導体・金属磁性体の材料物性、これらの積層構造・微細構造中のスピン輸送ダイナミクス、量子力学的コヒーレントダイナミクス等の基礎過程、それらを応用した機能素子について基礎から講義する。

    3 達成目標等

     スピントロニクスや量子エレクトロニクスの基礎過程とそれらを利用したスピン機能素子及び量子機能素子の動作原理について理解する。

    The class code for Google Classroom can be found on the Web site of the School of Engineering:

    https://www.eng.tohoku.ac.jp/english/academics/master.html (under "Timetable & Course Description")

    授業にはGoogle Classroomを利用(oohsbc6)

    1. Object

     By utilizing two degrees of electrons, charge and spin, in solid state materials simultaneously, new functional devices can be developed. This research area is referred to as spintronics. In order to understand operational principles of spintronics devices for integrated circuits and quantum computers, the fundamental spin-related phenomena in various materials will be presented.

    2. Description

     The lecture covers spin properties of semiconductor and metallic magnets, spin transport and spin dynamics in semiconductor- and metal-based structures, as well as the basic of spintronics device operation.

    3. Goal

     Understand the basic spin-related phenomena in solid state physics and their application to the spintronics devices.

  •   物性物理原論C / Fundamentals of Nano-Science C  
      山下 太郎  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

    様々な物質で発現する物性物理現象について、理解を深めることを目的とする。

    2.概要

    金属や誘電体、磁性体、超伝導体等において発現する多彩な物理現象や

    秩序状態、電場・磁場に対する応答、その微視的機構について解説する。

    3.達成目標等

    種々の物質の具体的な物性物理現象を理解すること。

    連絡や資料掲載など必要に応じ、Google Classroomを利用する。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Objective

    To understand physical phenomena emerged in various materials.

    2. Outline

    We will study the various physical phenomena, ordered states, electric/magnetic responses, and their microscopic mechanisms in metals, dielectrics, magnets, and superconductors.

    3. Learning objective

    To understand the physical properties of many kinds of materials.

    Check also google classroom.

  •   電磁気学Ⅰ / Electromagnetics I  
      深見 俊輔  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

     電磁気学は電気関連工学および物理学を学ぶ者にとって必須の科目である.授業は電磁気学基礎論,電磁気学Ⅰ,電磁気学Ⅱに分けられており,これら3つの科目を受講することにより,統一的に電磁気学を学習することができる.電磁気学Ⅰでは,主に物質中のマクスウェルの方程式を導き,これより真空中では光速で伝搬する電磁波の解が求められる過程を学ぶ.

    2.概要

     まず真空中の電磁界について理解を深め,次いで誘電体や磁性体などの物質中の静電界および静磁界が誘電率と透磁率を用いて表されることを学ぶと共に,時間的に変化する磁界と電界の振る舞いを学び,物質中のマクスウェルの方程式を導出し,これを用いると電磁波伝搬などの電磁界現象が説明できることを理解する.

    3.達成目標等

    ・真空中の電磁界について、電気双極子、ベクトルポテンシャル、およびビオ・サバールの法則を理解する.

    ・物質中の静電界および静磁界を求める方法を物理的および数学的に理解する.

    ・時間変化する磁界に対するファラデーの電磁誘導の法則と時間変化する電界に対する変位電流の法則からマクスウェルの方程式を求める過程を理解する.

    ・マクスウェルの方程式から伝搬する電磁波の解が導かれることを理解する.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    Lecture materials and information including class guidance will be informed using Google Classroom.

    1. Objective

    Electromagnetism is an essential subject for those who learn the electrical-related engineering and physics. It is possible to learn the unified electromagnetism by taking a series classes of electromagnetism basic theory, electromagnetism I (this class), and electromagnetism II. This class mainly aimed to derive the Maxwell's equations in material, and accordingly to learn the electromagnetic wave propagating at the speed of light in a vacuum.

    2. Overview

    Firstly, to deepen the understanding of electromagnetic field in a vacuum. Secondary, to understand the electrostatic and static magnetic fields in material such as dielectric or magnetic materials, along with learning of dielectric permittivity and magnetic permeability. Thirdly to learn time-varying behavior of electric and magnetic fields and to derive the Maxwell's equations in material. As well, to understand the Maxwell's equations could explain well the time-varying electromagnetic field phenomena such as electromagnetic wave propagation.

    3. Goals

    - Electromagnetic field in a vacuum: To understand electric dipole, the law of the vector potential, and the Biot-Savart law.

    - Electromagnetic field in material: To understand methods of obtaining an electrostatic and a static magnetic fields physically and mathematically.

    - Process of obtaining the Maxwell's equations: To understand the process through the law of displacement current associated with electric field and the law of electromagnetic induction to the time-varying magnetic field (Faraday's law).

    - Electromagnetic wave propagation: To understand the wave propagation based on the Maxwell's equations.

  •   電磁気学Ⅰ / Electromagnetics I  
      山末 耕平  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

     電磁気学は電気関連工学および物理学を学ぶ者にとって必須の科目である.授業は電磁気学基礎論,電磁気学Ⅰ,電磁気学Ⅱに分けられており,これら3つの科目を受講することにより,統一的に電磁気学を学習することができる.電磁気学Ⅰでは,主に物質中のマクスウェルの方程式を導き,これより真空中では光速で伝搬する電磁波の解が求められる過程を学ぶ.

    2.概要

     まず真空中の電磁界について理解を深め,次いで誘電体や磁性体などの物質中の静電界および静磁界が誘電率と透磁率を用いて表されることを学ぶと共に,時間的に変化する磁界と電界の振る舞いを学び,物質中のマクスウェルの方程式を導出し,これを用いると電磁波伝搬などの電磁界現象が説明できることを理解する.

    3.達成目標等

    ・真空中の電磁界について、電気双極子、ベクトルポテンシャル、およびビオ・サバールの法則を理解する.

    ・物質中の静電界および静磁界を求める方法を物理的および数学的に理解する.

    ・時間変化する磁界に対するファラデーの電磁誘導の法則と時間変化する電界に対する変位電流の法則からマクスウェルの方程式を求める過程を理解する.

    ・マクスウェルの方程式から伝搬する電磁波の解が導かれることを理解する.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    Lecture materials and information including class guidance will be informed using Google Classroom.

    1. Objective

    Electromagnetism is an essential subject for those who learn the electrical-related engineering and physics. It is possible to learn the unified electromagnetism by taking a series classes of electromagnetism basic theory, electromagnetism I (this class), and electromagnetism II. This class mainly aimed to derive the Maxwell's equations in material, and accordingly to learn the electromagnetic wave propagating at the speed of light in a vacuum.

    2. Overview

    Firstly, to deepen the understanding of electromagnetic field in a vacuum. Secondary, to understand the electrostatic and static magnetic fields in material such as dielectric or magnetic materials, along with learning of dielectric permittivity and magnetic permeability. Thirdly to learn time-varying behavior of electric and magnetic fields and to derive the Maxwell's equations in material. As well, to understand the Maxwell's equations could explain well the time-varying electromagnetic field phenomena such as electromagnetic wave propagation.

    3. Goals

    - Electromagnetic field in a vacuum: To understand electric dipole, the law of the vector potential, and the Biot-Savart law.

    - Electromagnetic field in material: To understand methods of obtaining an electrostatic and a static magnetic fields physically and mathematically.

    - Process of obtaining the Maxwell's equations: To understand the process through the law of displacement current associated with electric field and the law of electromagnetic induction to the time-varying magnetic field (Faraday's law).

    - Electromagnetic wave propagation: To understand the wave propagation based on the Maxwell's equations.

  •   電磁気学Ⅰ演習 / Exercises in Electromagnetics I  
      山下 太郎, 寺門 信明  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    授業にはGoogle Classroomを利用(クラスコード cmbrg6e)

    1.目的

     電子情報システム・応物系関連工学を学ぶ者にとって基礎的かつ必須的な科目の電磁気学Ⅰの講義内容にそって, 基礎的問題から応用的具体例についての練習問題を扱い, 実際に各自に毎時間解かせる.これにより, 講義内容の理解を確実にし, 深めるとともに応用力の養成を図る.

    2.概要

     電磁気学Ⅰで講義する内容に沿って, 基礎的問題から応用的問題を解く.

    3.達成目標等

     この授業では以下の能力を習得することを目標とする.

    ・真空中の電磁界について、電気双極子、ベクトルポテンシャル、およびビオ・サバールの法則を理解し, 基礎的問題を解くことができる.

    ・物質中の静電界および静磁界を求める方法を物理的および数学的に理解し, 基礎的問題を解くことができる.

    ・時間変化する磁界に対するファラデーの電磁誘導の法則と時間変化する電界に対する変位電流の法則からマクスウェルの方程式を求める過程を理解し, 基礎的問題から応用的問題までを解くことができる.

    ・マクスウェルの方程式から伝搬する電磁波の解が導かれることを理解し, 基礎的問題を解くことができる.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    Google Classroom will be used. (classcode: cmbrg6e)

    1- Purpose

    To ensure the understanding of and have practice on the application of the electromagnetism via exercise on various fundamental and applicable problems, following the lecture on electromagnetism I.

    2- Overview

     To solve fundamental and applicable problems.

    3- Achievement target

     3-1: To understand and solve the problems on "electromagnetic fields in vacuum", "electric dipole", "vector potential", and "Biot-Savart's law".

     3-2: To physically and mathematically understand the processes providing the electrostatic fields and the static magnetic fields in materials, and to solve the related problems.

     3-3: To understand the process that the Maxwell's equations can be obtained from the Faraday's law and the Ampere's law, and apply them to fundamental problems.

     3-4: To understand the process that the wave equation can be obtained from the Maxwell's equations and apply them to fundamental problems.

  •   電磁気学Ⅰ演習 / Exercises in Electromagnetics I  
      室賀 翔  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    授業にはGoogle Classroomを併用

    1.目的

     電子情報システム・応物系関連工学を学ぶ者にとって基礎的かつ必須的な科目の電磁気学Ⅰの講義内容にそって, 基礎的問題から応用的具体例についての練習問題を扱い, 実際に各自に毎時間解かせる.これにより, 講義内容の理解を確実にし, 深めるとともに応用力の養成を図る.

    2.概要

     電磁気学Ⅰで講義する内容に沿って, 基礎的問題から応用的問題を解く.

    3.達成目標等

     この授業では以下の能力を習得することを目標とする.

    ・真空中の電磁界について、電気双極子、ベクトルポテンシャル、およびビオ・サバールの法則を理解し, 基礎的問題を解くことができる.

    ・物質中の静電界および静磁界を求める方法を物理的および数学的に理解し, 基礎的問題を解くことができる.

    ・時間変化する磁界に対するファラデーの電磁誘導の法則と時間変化する電界に対する変位電流の法則からマクスウェルの方程式を求める過程を理解し, 基礎的問題から応用的問題までを解くことができる.

    ・マクスウェルの方程式から伝搬する電磁波の解が導かれることを理解し, 基礎的問題を解くことができる.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    Google Classroom will be complementary used in the class

    1- Purpose

    To ensure the understanding of and have practice on the application of the electromagnetism via exercise on various fundamental and applicable problems, following the lecture on electromagnetism I.

    2- Overview

     To solve fundamental and applicable problems.

    3- Achievement target

     3-1: To understand and solve the problems on "electromagnetic fields in vacuum", "electric dipole", "vector potential", and "Biot-Savart's law".

     3-2: To physically and mathematically understand the processes providing the electrostatic fields and the static magnetic fields in materials, and to solve the related problems.

     3-3: To understand the process that the Maxwell's equations can be obtained from the Faraday's law and the Ampere's law, and apply them to fundamental problems.

     3-4: To understand the process that the wave equation can be obtained from the Maxwell's equations and apply them to fundamental problems.

  •   電磁気学Ⅰ演習 / Exercises in Electromagnetics I  
      平永 良臣  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

     電子情報システム・応物系関連工学を学ぶ者にとって基礎的かつ必須的な科目の電磁気学Ⅰの講義内容にそって, 基礎的問題から応用的具体例についての練習問題を扱い, 実際に各自に毎時間解かせる.これにより, 講義内容の理解を確実にし, 深めるとともに応用力の養成を図る.

    2.概要

     電磁気学Ⅰで講義する内容に沿って, 基礎的問題から応用的問題を解く.

    3.達成目標等

     この授業では以下の能力を習得することを目標とする.

    ・真空中の電磁界について、電気双極子、ベクトルポテンシャル、およびビオ・サバールの法則を理解し, 基礎的問題を解くことができる.

    ・物質中の静電界および静磁界を求める方法を物理的および数学的に理解し, 基礎的問題を解くことができる.

    ・時間変化する磁界に対するファラデーの電磁誘導の法則と時間変化する電界に対する変位電流の法則からマクスウェルの方程式を求める過程を理解し, 基礎的問題から応用的問題までを解くことができる.

    ・マクスウェルの方程式から伝搬する電磁波の解が導かれることを理解し, 基礎的問題を解くことができる.

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1- Purpose

    To ensure the understanding of and have practice on the application of the electromagnetism via exercise on various fundamental and applicable problems, following the lecture on electromagnetism I.

    2- Overview

     To solve fundamental and applicable problems.

    3- Achievement target

     3-1: To understand and solve the problems on "electromagnetic fields in vacuum", "electric dipole", "vector potential", and "Biot-Savart's law".

     3-2: To physically and mathematically understand the processes providing the electrostatic fields and the static magnetic fields in materials, and to solve the related problems.

     3-3: To understand the process that the Maxwell's equations can be obtained from the Faraday's law and the Ampere's law, and apply them to fundamental problems.

     3-4: To understand the process that the wave equation can be obtained from the Maxwell's equations and apply them to fundamental problems.

  •   電磁気学Ⅱ / Electromagnetics II  
      廣岡 俊彦  
      工  
       
       

    Google Classroomのクラスコードは工学部Webページにて確認すること。

    学部シラバス・時間割(https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html)

    1.目的

      物質中の電磁波の伝搬についてMaxwell方程式を基本にして理解する。

    2.概要

      Maxwell方程式を基本として、電磁波の伝搬によってエネルギーと運動量が伝達されることを理解する。次に自由空間、誘電体、導体および磁性体中での電磁波の伝搬を説明し、電磁波の反射、屈折現象を理解する。また、導波管内の電磁波を例として、限られた空間内を伝搬する電磁波について説明する。項目の節目で演習を行い、基本事項の理解を深める。

    3.達成目標等

    ・電磁波に関する現象の基本的な物理概念を理解し、説明することができる。

    ・さまざまな物質中の電磁波伝搬の違いを理解し、応用することができる。

    授業は Google Classroomを使います。利用するときに「クラスコード」が必要です。後日お伝えします。

    The class code for Google Classroom can be found on the Web site of

    the School of Engineering:

    https://www.eng.tohoku.ac.jp/edu/syllabus-ug.html (JP Only)

    1. Purpose

    Understood by the Maxwell equations in basic for the propagation of electromagnetic waves in the material.

    2. Summary

    The Maxwell equation as a basic energy and momentum will understand that it is transmitted by the propagation of electromagnetic waves. Then free space, dielectric, describes the propagation of electromagnetic waves in the conductor and the magnetic material in the reflection of electromagnetic waves, to understand the refraction phenomenon. In addition, as an example of the electromagnetic wave in the waveguide, a description will be given of an electromagnetic wave propagating in the limited space. Do the exercises at the turning point of the item, a better understanding of the basics.

    3. Goals, etc.

    - Electromagnetic waves to understand the basic physical concepts of phenomena related to, can be explained.

    · Understand the difference between the electromagnetic wave propagation of various substances in, it can be applied.

  •   光物性学特論Ⅰ / Nonlinear and ultrafast material science  
      岩井 伸一郎, 理学部非常勤講師  
      理  
      後期  
      後期 金曜日 2講時  

    光と物質の相互作用において、光の強度が十分に弱い場合、物質の光に対する応答は、光強度には依存しない。太陽光や蛍光灯の下での物質の色や光沢は、このような「線形応答」の枠内で理解できる。しかし、レーザー光のようなの高い電場強度をもつ光に対しては、光電場の二次以上に比例する分極の効果が現れる。本講義では、非線形吸収や高調波発生(第二高調波発生、光整流)などの非線形光学効果の基本的な事項について学習する。さらに、近年のアト秒科学(2023年度ノーベル物理学賞)に至る超短パルスレーザー技術の発展は、光のエネルギーによって物質の温度が上昇する(あるいは熱によって物質は損傷する)遥か以前に、物質に強電場を印加することを可能にした。こうした最先端の光技術によって実現した、”非熱意的な”高エネルギー状態は、物質科学の研究を新たなフェーズに移行させつつある。ここでは、量子物質(超伝導体などの電子の量子効果や量子多体効果が支配する物質)の光・テラヘルツ制御(光誘起相転移、高次高調波発生、光強電場効果)についても紹介する。

    In light-matter interactions, the response of a material to light is independent of light intensity if the light intensity is weak. The color and gloss of materials under the sun can be understood within the framework of such a 'linear response'. However, for light with a high electric field intensity, such as laser light, light-induced polarizations are proportional to more than the second order of the optical electric field. In this lecture, the basic topics of non-linear optical effects such as non-linear absorption and harmonic generation (second harmonic generation, optical rectification) will be studied. Furthermore, recent developments in ultrashort pulsed laser technology leading to attosecond science (Nobel Prize in Physics 2023) have made it possible to apply a strong electric field to materials before the temperature of the matter is increased by the energy of light (or the materials is damaged by heat). These 'non-thermal' high-energy states, made possible by state-of-the-art light technology, are moving materials science research into a new phase. Here, the optical (or terahertz field) control of quantum matter (photoinduced phase transitions, higher harmonic generation and photo-intense electric field effects) in quantum matter (matter dominated by quantum effects of electrons and quantum many-body effects, such as superconductors) will also be presented.

もっと見る…