内容に類似性のあるシラバス

36 件ヒット (0.02秒):

  •   物理化学概論D(AMC) / Principles of spectroscopic methods in physical chemistry  
      髙岡 毅  
      理  
      前期  
      前期 木曜日 1講時  

    Starting from a lecture of the basic of spectroscopy,we try to survey modem spectroscopic methods used in physical chemistry.

    Gain the skill for the analysis of molecules,focusing on the understanding and application to the

    spectroscopic methods. We cover wide area of the spectroscopic methods,including optical absorprion/emission spectroscopy and magnetic resonance spectroscopy.

  •   物理化学概論D / Introduction to molecular spectroscopy and photochemistry  
      藤井 朱鳥  
      理  
      前期  
      前期 水曜日 2講時  

    分子分光学は分子のミクロな構造や動力学を観測、解明するために必須の分野である。また分子分光学はこれまでに学んできた量子化学の分子への直接の適用例となる。本講義では分子分光学の原理を理解し、分子構造決定の手法を学ぶ。また、核磁気共鳴分光法の原理及び光化学とレーザーの基礎を学ぶ。

    Molecular spectroscopy is highly important to explore microscopic structures of molecules and their dynamics. Molecular spectroscopy is also a direct application of quantum mechanics to molecular systems. In this course, the principles of molecular spectroscopy and their relation to molecular structure determination are presented. The principle of nuclear magnetic resonance (NMR) spectroscopy and basic concepts of photochemistry are also involved in the course.

  •   構造化学  
      中林 孝和, 田原 進也  
      薬  
      4セメスター  
      後期 金曜日 2講時 薬学部大講義室  

    生体分子の構造形成において重要な役割を果たす分子間相互作用について学ぶ。さらに、生体分子の構造、細胞の状態解析のための主要な手法である電子吸収・蛍光・赤外吸収・ラマン散乱・円偏光二色性・ESR・NMR・X線回折について、それらの原理を学び、生体分子の構造および細胞内状態の解析などへの応用を理解する。本科目は1年次に開講される「物理化学1」および全学教育科目「化学A」の内容を踏まえて行われる。

    This course provides students with basic knowledge of intermolecular interactions forming structures of biomolecules and the principles and concepts of a variety of spectroscopic methods for measuring biomolecular structures. The spectroscopic methods treated are X-ray diffraction, UV-Vis absorption, fluorescence, circular dichroism, IR, Raman, NMR, and ESR. Students are recommended to have finished "Physical Chemistry 1" and "Chemistry-A" before taking this course.

  •   原子分子物理学 / Atomic and Molecular Physics  
      岩井 伸一郎  
      理  
      前期  
      前期 火曜日 3講時  

    物質の電子(電荷、軌道、スピン)と電磁波である光との相互作用について、原子や分子およびその集合体である固体を舞台にして説明します。

    前半は、原子や分子の電子状態と光の相互作用について、基本的な熱・統計力学、電磁気学、初等量子力学を用い、

    主に下記の問題について概説します。

    ・なぜ量子論が必要なのか?

    ・原子や分子の構造

    ・物質(原子、分子、固体)の色と電子の波動関数の広がりの関係

    ・光と電子、スピンの相互作用

    さらに後半では、

    対象を固体(金属、絶縁体、磁性など)に拡げ、

    光と物質の相互作用について学びます。また、物質の量子力学的な性質を応用した光デバイスである

    発光ダイオードやレーザーの基礎のほか、超短パルスレーザーやテラヘルツ電磁波、光周波数コムなどの先端光技術およびそれを用いた光計測や物質の光制御(超高速光エレクトロニクス、光スピントロニクス)にも触れる予定です。

    The basic principles of light-matter interactions not only for atomic/molecular systems but also for solid materials will be discussed.

    In the former part, optical properties of atomic/molecular systems in terms of elementary electrodynamics, statistical physics , and quantum mechanics. Main subjects are shown below;

    ・Why is quantum mechanics necessary ?

    ・Electronic wavefunction and colors of matter

    ・Tight-binding theory (in solid state physics) and molecular orbital(in quantum chemistry)

    ・Electronic many body effect

    ・Spin-orbit interaction

    Then, in the latter part, advanced laser technologies such as extremely ultrashort laser pulse, frequency comb. terahertz wave etc... and their application to material science will be introduced.

  •   物理化学概論A(AMC) / Thermodynamics and statistical physics  
      米田 忠弘  
      理  
      前期  
      前期 月曜日 2講時  

    In this course, we study thermodynamics, statistical mechanics, and the properties of many-body systems at finite temperature. The course is intended for the understanding both of chemical physical phenomena appeared in material science. We will cover the classical thermodynamics, the relationship between the macroscopic phenomena and the microscopic properties (statistical mechanics), and the application of these ideas to the observed states of actual materials.

    In this course, we study thermodynamics, statistical mechanics, and the properties of many-body systems at finite temperature. The course is intended for the understanding both of chemical physical phenomena appeared in material science. We will cover the classical thermodynamics, the relationship between the macroscopic phenomena and the microscopic properties (statistical mechanics), and the application of these ideas to the observed states of actual materials.

  •   回折・分光学特論 / Introduction to Diffractometry and Spectroscopy on Physics  
      虻川 匡司, 寺内 正己, 那波 和宏  
      理  
      後期  
      後期 木曜日 3講時  

    結晶およびその表面の持つ対称性と構造と物性の関係を理解し,回折・分光実験からどのようにこれらの情報が得られるかを学んでもらう.特にX 線・中性子・電子線を用いた回折・分光実験について詳細に講義し,物質の静的構造と相転移現象がどのように観測できるかを理解して もらう.この分野に関するトピックスも紹介し,広く構造・物性に関して興味を持ってもらう.

    Purpose of this lecture is to learn about the relation between crystal symmetry, structure, and physical properties of materials and surfaces. To understand how to observe static as well as dynamic properties (especially phase transisions) of materials, the details about Diffractometry and Spectroscopy using x-ray, neutron, and electron will be explained in detail. Topics related to these fields will also be introduced.

  •   専門基礎化学Ⅰ(AMC) / Special Class in Basic ChemistryⅠ  
      南後 恵理子  
      理  
      前期  
      前期 月曜日 2講時  

    この講義では、量子力学と量子化学の基礎を学び理解を深める。量子力学の基礎から始め、基本であるシュレディンガー方程式について学ぶ。粒子の波動性を記述する波動関数の基本概念(=シュレディンガー方程式の解)や量子力学における分子の振動、回転運動や水素原子の電子状態のモデル化やその応用を習得する。

    In this lecture, we try to understand fundamentals of the quantum mechanics and quantum chemistry that are required for advanced chemistry courses. Starting with a lecture of the early quantum mechanics, we learn how to formulate the Schrödinger equation, which is the basic equation of quantum mechanics. The basic concept of wavefunctions ( = solutions of the Schrödinger equations) are presented to understand the wave nature of particles in atomic scale. Then the simple models for vibrational and rotational motions of molecules, and the electronic state of the hydrogen atom are treated quantum mechanically as the prototypes for more complex atoms and molecules.

  •   先端物理化学特論Ⅳ / Physical chemistry of liquid interfaces  
      森田 明弘  
      理  
      前期  
      前期 月曜日 4講時  

    液体界面は我々の周りに広く見られ、気液界面、液液界面、固液界面と多岐にわたり、蒸発や凝縮はもとより、抽出や分離、センサー、電気化学反応など多くの例で重要な対象である。本講義では、これらの液体界面の現象を理解するための理論および計測方法の基礎を概説する。

    学部で学んだ物理化学、とくに熱力学をもとに不均一な界面系に応用する発展を扱い、界面を特徴づける量を熱力学の観点から理解する。そして界面の熱力学を基盤として、さらに統計力学、電気化学、分光学、分子シミュレーションなどの手法と知見と取り扱う。

    Liquid interfaces, including gas-liquid, liquid-liquid and solid-liquid, are ubiquitous in our life, and play important roles in a number of phenomena, such as vaporization, condensation, extraction, separation, sensing, electrochemical reactions, etc. This course deals with fundamental aspects of theory and measurements for liquid interfaces.

    This course is based on physical chemistry, particularly thermodynamics, in undergraduate level, and extend the physical chemistry to heterogeneous systems including interfaces. We further treat statistical mechanics, electrochemistry, spectroscopy and molecular simulation to explore the detailed structure and dynamics at liquid interfaces.

  •   先端化学・生物化学特殊講義ⅡA / Physical chemistry of liquid interfaces  
      森田 明弘  
      理  
      前期  
      前期 月曜日 4講時  

    液体界面は我々の周りに広く見られ、気液界面、液液界面、固液界面と多岐にわたり、蒸発や凝縮はもとより、抽出や分離、センサー、電気化学反応など多くの例で重要な対象である。本講義では、これらの液体界面の現象を理解するための理論および計測方法の基礎を概説する。

    学部で学んだ物理化学、とくに熱力学をもとに不均一な界面系に応用する発展を扱い、界面を特徴づける量を熱力学の観点から理解する。そして界面の熱力学を基盤として、さらに統計力学、電気化学、分光学、分子シミュレーションなどの手法と知見と取り扱う。

    Liquid interfaces, including gas-liquid, liquid-liquid and solid-liquid, are ubiquitous in our life, and play important roles in a number of phenomena, such as vaporization, condensation, extraction, separation, sensing, electrochemical reactions, etc. This course deals with fundamental aspects of theory and measurements for liquid interfaces.

    This course is based on physical chemistry, particularly thermodynamics, in undergraduate level, and extend the physical chemistry to heterogeneous systems including interfaces. We further treat statistical mechanics, electrochemistry, spectroscopy and molecular simulation to explore the detailed structure and dynamics at liquid interfaces.

  •   物理化学概論B(AMC) / General Physical Chemistry B  
      組頭 広志  
      理  
      後期  
      後期 月曜日 2講時  

    物理化学・量子化学の基礎となる量子力学とその化学結合への応用について学ぶ。具体的には、量子力学における数学的手法・近似法、原子構造、化学結合、原子価結合、分子軌道理論について学ぶ。

    The course deals with the introduction to the principles of quantum mechanics and their application to chemical systems.Topics include the formalism and mahtematical tools of quantum mechanics; approximate methods; atomic structure; the chemical bond,valence bond; and molecular orbital theory.

もっと見る…