シラバスの表示

情報教育特別講義(統計数理モデリング)

水曜5限. 単位数/Credit(s): 2.00単位. 担当教員(所属)/Instructor (Position): 荒木 由布子 所属:情報科学研究科. 対象学部/Eligibility: 全. 開講期/Term: 2/4/6/8セメスター. 科目群/Subject Group: 全学教育科目先進科目-情報教育. 年度: 2025. 科目ナンバリング/Course Numbering: ZAC-OIN805J. 使用言語/Language of Instruction: 日本語.

科目コード

CAB017202

科目名/Subject

情報教育特別講義(統計数理モデリング)

教室/Place

CALL教室 M204

主要授業科目/Essential Subjects

各学部の履修内規または学生便覧を参照。

授業題目/Class Subject

統計数理モデリング



Modeling in Statistical Mathematics

授業の目的と概要/Class Objectives and Summary

データ科学・AIの核となる統計数理モデルは,不確実性を有するデータから有効に情報を抽出し,様々な分野で問題解決に用いられる. 本授業科目の目的は,主に予測と関連性の説明を目的とした統計数理モデルについて,理論と実践の両面から学び,理解することにある.



Modeling in Statistical Mathematics, which is the core of data science and AI, is used to extract effective information from data with variation and to solve problems in various fields. The purpose of this course is to learn and understand several modeling in statistical mathematics from both theoretical and practical techniques for applying models to data.

学修の到達目標/Learning Goals

近年の様々な種類のデータに統計数理モデルを適用するための理論と実践的なスキルを学ぶ.様々なタイプのデータから現象の予測と関係性の説明のために,主な統計数理モデルを適切に利用し,結果を解釈できるようになる.



Students will learn both theoretical and practical techniques for applying statistical models to different kinds of data. At the end of this course, students will be able to use several statistical models to predict phenomena and explain relationships from various types of data and interpret the results.

授業内容・方法と進度予定/Contents and Progress Schedule of the Class

1. イントロダクション Python,  R入門

2. 回帰モデル

3. 重回帰モデル

4. 重回帰モデル

5. モデル選択・正則化

6. モデル選択・正則化

7. 一般化線形モデル(ロジスティック回帰,ポアソン回帰)

8. 非線形回帰モデル

9. 非線形回帰モデル

10.主成分分析

11.主成分分析

12. 因子分析 

13.構造方程式モデル

14.判別・クラスタリング

15.まとめ



1. Introduction, Python, R

2. Regression models

3. Multiple regression models

4. Multiple regression models

5. Model selection, regularization

6. Model selection, regularization

7. Generalized linear models (Logistic regression, Poisson regression)

8. Nonlinear regression models

9. Nonlinear regression models

10.Principal component analysis

11.Principal component analysis

12.Factor analysis

13.Structural Equation Modeling

14.Classification, Clustering

15.Concluding remarks

成績評価方法/Evaluation Method

グループ演習の様子,個人レポートの内容で総合的に評価する.



Final grade will be calculated comprehensively based on group data analysis project and individual repots.

教科書および参考書/Textbook and References

  • Pythonで学ぶ確率統計, 尾畑 伸明 著・ 荒木 由布子, 共立出版 ISBN/ISSN: 9784320125216
  • 多変量解析入門, 岩波書店 ISBN/ISSN: 4000056530
  • Generalized Additive Models, Chapman & Hall/CRC ISBN/ISSN: 9781584884743
  • 情報量規準, 朝倉書店 ISBN/ISSN: 9784254128729

関連URL/URL

https://www.math.is.tohoku.ac.jp/~arakilab/

授業時間外学修/Preparation and Review

レポートに取り組み,指示された方法で提出すること.



Work on the assignments given in class and submit the results.

授業へのパソコン持ち込み【必要/不要】/Students must bring their own computers to class [Yes / No]

必要



Yes

連絡先(メールアドレス等)/Contact(Email, etc.)

全学教育HP掲載の「全学教育科目授業担当教員連絡先一覧」を参照。

その他/Other Comments/Instructions

数理統計学, 線形代数学, 微分積分学の基本的事項に加え,初歩的なプログラミング(言語は問わない)について既習していると望ましい。

It is desirable to have a basic understanding of some mathematics (statistics, linear algebra, differential and integral calculus) and elementary programming.





 これと関連したシラバス 学務情報システムで確認
このシラバスを共有